服務(wu)熱線
-
技術(shu)文章ARTICLE
您(nin)當(dang)前(qian)的位(wei)置:首(shou)頁(ye) > 技術(shu)文章 > 熱釋光(guang)技術(shu)快(kuai)速檢測(ce)植(zhi)物(wu)脂(zhi)質(zhi)過(guo)氧(yang)化(hua)熱釋光(guang)技術(shu)快(kuai)速檢測(ce)植(zhi)物(wu)脂(zhi)質(zhi)過(guo)氧(yang)化(hua)
發布(bu)時間(jian): 2021-05-31 點擊次數(shu): 2471次(ci)由高(gao)溫(wen)、低溫(wen)、幹(gan)旱(han)、重(zhong)金(jin)屬以及病蟲(chong)害(hai)引起的植物(wu)脅(xie)迫(po),導(dao)致(zhi)每年農(nong)作(zuo)物(wu)的產量(liang)降低,品質(zhi)下降。各(ge)類(lei)脅(xie)迫(po)都(dou)會(hui)導(dao)致(zhi)活(huo)性(xing)氧(ROS)的累積。當(dang)植物(wu)細(xi)胞(bao)的細胞膜或(huo)者(zhe)細(xi)胞(bao)器(qi)膜的磷脂分子(zi)受(shou)到ROS攻(gong)擊之(zhi)後,便會(hui)發生(sheng)脂質(zhi)過(guo)氧(yang)化(hua)反(fan)應(ying),形成(cheng)脂(zhi)質(zhi)過(guo)氧(yang)化(hua)產物(wu)。脂(zhi)質(zhi)過(guo)氧(yang)化(hua)使細胞(bao)膜(mo)的流動性(xing)和通透性(xing)發生(sheng)改變(bian),最終(zhong)導(dao)致(zhi)細(xi)胞結(jie)構和功(gong)能的改變(bian)。

目前(qian),脂(zhi)質(zhi)過(guo)氧(yang)化(hua)通常(chang)通過(guo)測(ce)定降解產物(wu)(如丙(bing)二(er)醛(quan)MDA)含(han)量(liang)或(huo)檢測(ce)抗(kang)氧(yang)化(hua)劑活性(xing)進行評估(gu),前(qian)者(zhe)可(ke)采(cai)用(yong)熒(ying)光(guang)法或(huo)TBA法(fa),後者(zhe)往往采(cai)用(yong)高(gao)效(xiao)液相(xiang)色(se)譜(pu)法或(huo)紫(zi)外(wai)可(ke)見光分(fen)光(guang)光度(du)法(fa)。這(zhe)些(xie)檢測(ce)方法各(ge)有優(you)缺(que)點,如TBA-MDA法(fa)設(she)備(bei)要(yao)求(qiu)低,但靈敏度差;高(gao)效(xiao)液相(xiang)色(se)譜(pu)法儀器(qi)定量(liang)明(ming)確,但儀器(qi)昂貴、操(cao)作(zuo)繁瑣。
本(ben)文介紹壹(yi)種快速簡(jian)單(dan)的檢測(ce)方法。該方法基(ji)於(yu)植物(wu)熱釋光(guang)技術(shu)。通過(guo)測(ce)定的TL曲線的特征波峰快(kuai)速檢測(ce)植(zhi)物(wu)的氧化(hua)脅(xie)迫(po),測(ce)定脂質(zhi)過(guo)氧(yang)化(hua)水(shui)平。

晶(jing)體(ti)受(shou)到輻(fu)射(she)照(zhao)射(she)後,會(hui)產生自(zi)由電子(zi),這(zhe)些(xie)電子(zi)被(bei)晶格(ge)缺(que)陷俘(fu)獲而積(ji)攢(zan)起來(lai),在加(jia)熱過(guo)程(cheng)中(zhong)以光(guang)的形式釋放(fang)出來(lai)。這(zhe)種現(xian)象(xiang)即為熱釋光(guang)(英(ying)文名(ming)稱(cheng)Thermoluminescence,縮寫(xie)為(wei)TL)。
熱釋光(guang)測(ce)定基(ji)本的實驗(yan)過(guo)程(cheng)是將(jiang)葉(ye)片或(huo)藻液快(kuai)速冷凍到某(mou)壹(yi)溫(wen)度(du),之(zhi)後給葉(ye)片壹(yi)個足(zu)夠強,但時(shi)間(jian)盡(jin)量(liang)短(duan)(壹(yi)般<5µs)的單反(fan)轉光(guang)(single turn-over flash),用於(yu)誘導(dao)熱釋光(guang);然後逐漸升溫(wen),同(tong)時(shi)測(ce)量(liang)樣(yang)品(pin)放(fang)出的熱釋光(guang),繪制(zhi)TL譜帶(dai)。
目(mu)前(qian)商(shang)業(ye)化(hua)的植物(wu)熱釋光(guang)測(ce)量(liang)系統為TL6000。北京(jing)易科泰生態(tai)技術(shu)有(you)限公司(si)提(ti)供TL6000完備(bei)的系統配(pei)置及專(zhuan)業(ye)的售(shou)後服務(wu)。

大(da)量(liang)研究發現(xian):熱釋光(guang)測(ce)量(liang)能夠反(fan)映(ying)光合生(sheng)物(wu)的脂質(zhi)過(guo)氧(yang)化(hua)水(shui)平。熱釋光(guang)強度會(hui)在120℃至140℃升溫(wen)過(guo)程(cheng)產(chan)生特(te)異性(xing)波峰。該(gai)波峰代表由三(san)重態(tai)羰(tang)基(ji)及單(dan)線態(tai)氧引起的脂質(zhi)過(guo)氧(yang)化(hua)的水(shui)平,即波峰越高(gao)脂質(zhi)過(guo)氧(yang)化(hua)程(cheng)度(du)越高(gao),並(bing)且波峰高(gao)低與(yu)其(qi)他脂(zhi)質(zhi)過(guo)氧(yang)化(hua)檢測(ce)指(zhi)標存在相關關系。如下圖,熱釋光(guang)特征(zheng)峰強度與(yu)MDA濃(nong)度(du)呈(cheng)現(xian)較強的線性(xing)相關性(xing)(黑色(se)實(shi)心方形),引自1998年的《Photochemistry and Photobiology》,原文題目(mu)為《The Origin of 115-130°C Thermoluminescence Bands in Chlorophyll-Containing Material》。

該特(te)征(zheng)波(bo)峰在20世紀90年(nian)代被(bei)發現(xian)後,便廣(guang)泛用於(yu)各(ge)類(lei)脅(xie)迫(po)研究中(zhong)。如2003年(nian),《PNAS》刊登了題(ti)為《Early light-induced proteins protect Arabidopsis from photooxidative stress》的論文:Claire等人(ren)使用了(le)植(zhi)物(wu)熱釋光(guang)技術(shu),評(ping)估(gu)了(le)高(gao)光下低溫(wen)脅(xie)迫(po)對(dui)野(ye)生(sheng)型和突(tu)變(bian)體(ti)的氧化(hua)損傷。相(xiang)比於(yu)野生型,高(gao)光環(huan)境低溫(wen)脅(xie)迫(po)下的chaos突(tu)變(bian)體(ti)(葉(ye)綠(lv)體(ti)蛋白(bai)轉運(yun)相關元(yuan)件(jian)cpSRP亞(ya)基(ji)缺(que)失(shi))遭受(shou)了(le)嚴(yan)重(zhong)的光氧化(hua)損傷,即135℃左(zuo)右(you)的熱釋光(guang)信號(hao)強烈(lie),並(bing)表現(xian)為(wei)葉(ye)片褪(tui)綠(lv)。

Renata等人(ren)使(shi)用(yong)Thermoluminescence TL 系統研究了(le)新型汙染(ran)物(wu)納(na)米(mi)二(er)氧化(hua)鈦TiO2對(dui)擬(ni)南(nan)芥(jie)生(sheng)長和抗(kang)氧(yang)化(hua)物(wu)含(han)量(liang)及基(ji)因(yin)表達(da)、抗(kang)氧(yang)化(hua)酶活性(xing)等方面的影(ying)響(xiang),發現(xian)高(gao)濃(nong)度(du)TiO2處理(li)擬(ni)南(nan)芥(jie)種子(zi)造(zao)成(cheng)了(le)成(cheng)熟個體(ti)葉(ye)片的脂質(zhi)過(guo)氧(yang)化(hua)。論文發表於(yu)2016年《Environmental Pollution》雜誌(zhi),題為《Titanium dioxide nanoparticles (100-1000 mg/l) can affect vitamin E response in Arabidopsis thaliana》。

中科院水(shui)生生(sheng)物(wu)研究所王強課題(ti)組對比了(le)常(chang)溫(wen)和低溫(wen)環(huan)境下極地雪藻和模(mo)式藻萊茵(yin)衣(yi)藻的生長、光(guang)合活(huo)性(xing)、膜脂質(zhi)過(guo)氧(yang)化(hua)、抗(kang)氧(yang)化(hua)活性(xing),揭示了極(ji)地雪藻低溫(wen)適(shi)應(ying)的光合調(tiao)節基(ji)礎(chu)。脂(zhi)質(zhi)過(guo)氧(yang)化(hua)的評估除(chu)了(le)測(ce)定了MDA的含(han)量(liang),還使用Thermoluminescence TL系統考察(cha)了脂質(zhi)過(guo)氧(yang)化(hua)水(shui)平。結(jie)果(guo)顯(xian)示(shi)低溫(wen)下萊茵(yin)衣(yi)藻表現(xian)出(chu)*的脂質(zhi)過(guo)氧(yang)化(hua)水(shui)平,而極(ji)地雪藻卻沒(mei)有(you)顯(xian)著(zhu)升高(gao),表明(ming)極地雪藻在低溫(wen)環(huan)境中(zhong)能夠有(you)效(xiao)清(qing)除(chu)活(huo)性(xing)氧。該特性(xing)可(ke)能是極(ji)地雪藻適(shi)應(ying)低溫(wen)的原因(yin)之(zhi)壹(yi)。論文發表於(yu)2020年的《Frontiers in Microbiology》雜誌(zhi),題為《Low-Temperature Adaptation of the Snow Alga Chlamydomonas nivalis Is Associated With the Photosynthetic System Regulatory Process》。

由此(ci)可(ke)見,基(ji)於(yu)Thermoluminescence TL 系統的脂質(zhi)過(guo)氧(yang)化(hua)檢測(ce)能夠快(kuai)速、輕(qing)松(song)、有效(xiao)檢測(ce)植(zhi)物(wu)的氧化(hua)脅(xie)迫(po),測(ce)定脂質(zhi)過(guo)氧(yang)化(hua)水(shui)平。本(ben)文提到的各(ge)類(lei)脂質(zhi)過(guo)氧(yang)化(hua)檢測(ce)方法采(cai)用(yong)了(le)不同的手段,也(ye)反(fan)映(ying)了不同的側面。研究者(zhe)可(ke)根據研究目(mu)的和實(shi)驗(yan)條件(jian)選擇(ze)不同的檢測(ce)方法或(huo)同(tong)時(shi)選(xuan)擇(ze)幾(ji)種方法對植物(wu)的脂質(zhi)過(guo)氧(yang)化(hua)進行全面(mian)評(ping)估。
北(bei)京(jing)易科泰生態(tai)技術(shu)有(you)限公司(si)提(ti)供完備(bei)的植物(wu)無(wu)損(sun)理(li)化(hua)檢測(ce)的技術(shu)方案:
次生代謝產(chan)物(wu)預測(ce)和成(cheng)像(xiang)
氮(dan)素(su)含(han)量(liang)快速測(ce)定和成(cheng)像(xiang)
冠層含(han)水(shui)量(liang)預測(ce)
色(se)素(su)含(han)量(liang)無損檢測(ce)和成(cheng)像(xiang)
- TL熱釋光(guang)技術(shu)測(ce)定植物(wu)脂(zhi)質(zhi)過(guo)氧(yang)化(hua)的部(bu)分(fen)論文有:
- Bacsó, R., Molnár, A., Papp, I., and Janda, T. (2008). Photosynthetic behaviour of Arabidopsis plants with a Cap Binding Protein 20 mutation under water stress. Photosynthetica 46, 268.
- Ducruet, J.-M. (2003). Chlorophyll thermoluminescence of leaf discs: simple instruments and progress in signal interpretation open the way to new ecophysiological indicators. Journal of Experimental Botany 54, 2419–2430.
- Havaux, M., and Niyogi, K.K. (1999). The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. PNAS 96, 8762–8767.
- Havaux, M., Bonfils, J.-P., Lütz, C., and Niyogi, K.K. (2000). Photodamage of the Photosynthetic Apparatus and Its Dependence on the Leaf Developmental Stage in the npq1 Arabidopsis Mutant Deficient in the Xanthophyll Cycle Enzyme Violaxanthin De-epoxidase. Plant Physiology 124, 273–284.
- Hutin, C., Nussaume, L., Moise, N., Moya, I., Kloppstech, K., and Havaux, M. (2003). Early light-induced proteins protect Arabidopsis from photooxidative stress. PNAS 100, 4921–4926.
- Merzlyak, M.N., Pavlov, V.K., and Zhigalova, T.V. (1992). Effect of Desiccation on Chlorophyll High Temperature Chemiluminescence in Acer platanoides L. and Aesculus hippocastanum L. Leaves. Journal of Plant Physiology 139, 629–631.
- M’rah, S., Ouerghi, Z., Berthomieu, C., Havaux, M., Jungas, C., Hajji, M., Grignon, C., and Lachaâl, M. (2006). Effects of NaCl on the growth, ion accumulation and photosynthetic parameters of Thellungiella halophila. Journal of Plant Physiology 163, 1022–1031.
- Szymańska, R., Kołodziej, K., Ślesak, I., Zimak-Piekarczyk, P., Orzechowska, A., Gabruk, M., Żądło, A., Habina, I., Knap, W., Burda, K., et al. (2016). Titanium dioxide nanoparticles (100–1000 mg/l) can affect vitamin E response in Arabidopsis thaliana. Environmental Pollution 213, 957–965.
- Vavilin, D.V., and Ducruet, J.-M. (1998). The Origin of115–130°C Thermoluminescence Bands in Chlorophyll-Containing Material. Photochemistry and Photobiology 68, 191–198.
- Zheng, Y., Xue, C., Chen, H., He, C., and Wang, Q. (2020). Low-Temperature Adaptation of the Snow Alga Chlamydomonas nivalis Is Associated With the Photosynthetic System Regulatory Process. Front. Microbiol. 11.






