服(fu)務熱(re)線(xian)
-
技術(shu)文(wen)章ARTICLE
您當前(qian)的位置:首頁(ye) > 技術(shu)文(wen)章 > 易(yi)科(ke)泰(tai)呼(hu)吸(xi)代謝(xie)技(ji)術(shu)助(zhu)力院士發(fa)表2022年(nian)PNAS論文(wen)易(yi)科(ke)泰(tai)呼(hu)吸(xi)代謝(xie)技(ji)術(shu)助(zhu)力院士發(fa)表2022年(nian)PNAS論文(wen)
發布時間(jian): 2022-01-20 點擊次數(shu): 1855次還記(ji)得2020年(nian)初那(na)場全(quan)球蝗(huang)災嗎(ma)?在人類激戰疫(yi)情(qing)之(zhi)初,壹(yi)場(chang)由(you)沙(sha)漠蝗(huang)引起的蝗(huang)災悄然從東(dong)非(fei)渡過(guo)紅(hong)海(hai),進入(ru)歐(ou)洲和(he)亞(ya)洲,到達巴基(ji)斯(si)坦(tan)和印(yin)度(du)。其千裏之(zhi)行給(gei)途徑(jing)國家帶來饑(ji)餓(e)恐(kong)慌(huang),並(bing)讓許(xu)多(duo)人擔心壓(ya)境(jing)蝗(huang)蟲(chong)是否會威(wei)脅(xie)我國糧(liang)食安全(quan)。
依(yi)托(tuo)於(yu)熱帶和亞(ya)熱帶(dai)沙(sha)漠生境的沙(sha)漠蝗(huang)不會(hui)給我(wo)國帶來危害(hai),但其“親(qin)戚(qi)"—飛蝗(huang)在(zai)我國歷(li)造成(cheng)許(xu)多(duo)民不聊(liao)生的災害。成(cheng)群飛蝗(huang)馬(ma)拉松式(shi)的長距離(li)遷飛是造成(cheng)蝗(huang)災爆發(fa)的主要原(yuan)因(yin);但散(san)居型飛蝗(huang)卻(que)很(hen)少這麽幹,它們(men)更青(qing)睞(lai)短途(tu)旅(lv)行(xing)。飛蝗(huang)為(wei)何會(hui)根(gen)據(ju)種(zhong)群密(mi)度(du)調(tiao)整飛行對策(ce)呢(ne)?
在(zai)2026年(nian)01月(yue)10日發(fa)表(biao)於(yu)美(mei)國(guo)《國(guo)家科學(xue)院院刊(kan)》的壹項研(yan)究中(zhong),中(zhong)國(guo)科學院北(bei)京(jing)生(sheng)命(ming)科(ke)學研究院康樂(le)院士團(tuan)隊(dui)解釋了(le)飛蝗(huang)“欲(yu)速(su)則(ze)不達"的飛行奧(ao)秘(mi),為(wei)動物的飛行適(shi)應(ying)策(ce)略研究提(ti)供了(le)新的視角。

研(yan)究發(fa)現,蝗(huang)蟲(chong)飛行肌(ji)中(zhong)的能量(liang)代謝(xie)過(guo)程的差異(yi)是群居型和散(san)居型飛蝗(huang)飛行特(te)征(zheng)和(he)能力分化(hua)的主要原(yuan)因(yin)。相(xiang)較於(yu)群居型飛蝗(huang),散(san)居型飛蝗(huang)無(wu)論是在(zai)靜息狀(zhuang)態(tai)下(xia)還是在(zai)飛行過(guo)程(cheng)中(zhong),均表現(xian)出較(jiao)高(gao)的能量(liang)代謝(xie)模式(shi)。進壹(yi)步(bu)的能量(liang)代謝(xie)相(xiang)關(guan)基(ji)因(yin)表(biao)達分析、呼(hu)吸(xi)代謝(xie)檢(jian)測、RNA幹擾及(ji)藥理學(xue)功(gong)能驗(yan)證表(biao)明(ming),散(san)居型飛蝗(huang)飛行肌(ji)高(gao)能量(liang)代謝(xie)模式(shi)提(ti)供了(le)較(jiao)多(duo)的飛行所(suo)需(xu)能量(liang),但在(zai)飛行過(guo)程(cheng)中(zhong)會(hui)產生更多(duo)的活性氧(yang),從(cong)而(er)造成(cheng)氧(yang)化(hua)壓(ya)力積(ji)累並(bing)抑制(zhi)其長距離(li)飛行能力。相(xiang)反,群居型飛蝗(huang)相(xiang)對較(jiao)低的能量(liang)代謝(xie)使(shi)其在長時間(jian)飛行過(guo)程(cheng)中(zhong)能夠保持較(jiao)少的活性氧(yang)產(chan)生(sheng),從(cong)而(er)維持飛行肌(ji)的氧化(hua)壓(ya)力平(ping)衡(heng)。通(tong)過改變飛蝗(huang)種(zhong)群密(mi)度(du),他們(men)發現(xian)兩型飛蝗(huang)的飛行特(te)點(dian)、飛行肌(ji)能量(liang)代謝(xie)相(xiang)關(guan)基(ji)因(yin)的表達以及(ji)飛行過(guo)程(cheng)中(zhong)活(huo)性氧的產生,能夠向相反的方向改變。這充(chong)分地說明(ming)蝗(huang)蟲(chong)成(cheng)長過程(cheng)中(zhong)經(jing)歷的種(zhong)群密(mi)度(du)塑(su)造了(le)這(zhe)種(zhong)飛行特(te)征(zheng)。

近(jin)些年(nian)動物的異(yi)常(chang)遷飛(徙(xi))給(gei)人類社會帶來了(le)很(hen)多(duo)未(wei)知和風(feng)險,而(er)人類對支(zhi)配這(zhe)些異(yi)常(chang)復雜(za)行(xing)為背後的呼(hu)吸(xi)代謝(xie)能量(liang)學機理研究卻(que)很(hen)少。易(yi)科(ke)泰(tai)生(sheng)態(tai)技術(shu)有限(xian)公(gong)司作為SSI呼(hu)吸(xi)代謝(xie)技(ji)術(shu)中(zhong)國(guo)專(zhuan)業(ye)技(ji)術(shu)服(fu)務中(zhong)心(xin),提(ti)供全(quan)齡(ling)動(dong)物(wu)靜息、活(huo)動(dong)、飛行、繁(fan)殖等行為狀態(tai)以(yi)及(ji)環境(jing)模擬和野外條(tiao)件(jian)下的高(gao)精(jing)度(du)能量(liang)代謝(xie)監測定(ding)制(zhi)技術(shu)方案,助(zhu)力於(yu)地球動物(wu)與人類在生態-農(nong)業(ye)-健(jian)康領域(yu)的創新型科學(xue)研(yan)究。
部(bu)分前(qian)沿研(yan)究案(an)例如下(xia):
1.English, S.G., Sandoval-Herrera, N.I., Bishop, C.A. et al. Neonicotinoid pesticides exert metabolic effects on avian pollinators. Sci Rep 11, 2914 (2021).
2.Freeman, M.T., Czenze, Z.J., Schoeman, K. et al. Extreme hyperthermia tolerance in the world’s most abundant wild bird. Sci Rep 10, 13098 (2020).
3.Gutiérrez, J.S., Sabat, P., Castañeda, L.E. et al. Oxidative status and metabolic profile in a long-lived bird preparing for extreme endurance migration. Sci Rep 9, 17616 (2019).
4.Mcguire L P , Jonasson K A , Guglielmo C G . Bats on a Budget: Torpor-Assisted Migration Saves Time and Energy[J]. Plos One, 2014, 9.
5.Mcwilliams S , Pierce B , Wittenzellner A , et al. The energy savings-oxidative cost trade- off for migratory birds during endurance flight[J]. eLife Sciences, 2020, 9.
6.Peña-Villalobos, I., Casanova-Maldonado, I., Lois, P. et al. Costs of exploratory behavior: the energy trade-off hypothesis and the allocation model tested under caloric restriction. Sci Rep 10, 4156 (2020).
7.Thompson M L , Nomakwezi M , Bennett N C , et al. Solar Radiation during Rewarming from Torpor in Elephant Shrews: Supplementation or Substitution of Endogenous Heat Production?[J]. PLoS ONE, 2015, 10(4):e0120442-.
8.Youngblood J P , Vandenbrooks J M , Babarinde O , et al. Oxygen supply limits the heat tolerance of locusts during the first instar only[J]. Journal of Insect Physiology, 2020.
9.【中(zhong)國(guo)科學報(bao)】飛蝗(huang)飛行奧(ao)秘(mi)獲(huo)揭示(shi):群居“馬(ma)拉松"散(san)居“百(bai)米賽"







