服(fu)務(wu)熱(re)線(xian)
-
技術(shu)文章ARTICLE
您(nin)當前(qian)的位置:首(shou)頁(ye) > 技術(shu)文章 > 易科(ke)泰(tai)昆蟲高通(tong)量呼(hu)吸(xi)代謝測(ce)量系統應用案(an)例(li)易科(ke)泰(tai)昆蟲高通(tong)量呼(hu)吸(xi)代謝測(ce)量系統應用案(an)例(li)
發布(bu)時間(jian): 2024-08-20 點擊次數(shu): 1439次(ci)高通(tong)量呼(hu)吸(xi)測量系統專為昆蟲等微(wei)小生(sheng)物(wu)設(she)計(ji),能夠精(jing)確(que)測(ce)定其呼吸(xi)速(su)率(lv)和代(dai)謝水平(ping)。該(gai)系統利用熒(ying)光光纖(xian)氧(yang)氣測(ce)量技術(shu),實(shi)現(xian)了(le)對微(wei)小生(sheng)物(wu)耗(hao)氧(yang)量的精確(que)測(ce)量,為(wei)科(ke)研人(ren)員(yuan)提供了(le)壹(yi)種高效(xiao)率、高靈(ling)敏度(du)的研究工(gong)具。該(gai)系統廣(guang)泛(fan)應用於實驗(yan)生(sheng)物(wu)學(xue)、環境毒(du)理學和氣候(hou)變(bian)化研究等多(duo)個(ge)領(ling)域(yu)。
案(an)例(li)1:果蠅呼(hu)吸(xi)代謝研究
在丹(dan)麥奧胡斯(si)大學進行的壹(yi)項研究中,研究人(ren)員(yuan)利用高通(tong)量呼(hu)吸(xi)測量技術(shu),對果蠅(Drosophila melanogaster 和 Drosophila littoralis)在不(bu)同(tong)生(sheng)命(ming)周期的呼吸(xi)速(su)率(lv)進(jin)行測量。

在實(shi)驗(yan)的第壹(yi)部分(fen),研究者(zhe)們主要是測量黑腹果蠅的卵、三齡(ling)幼(you)蟲和蛹(yong)的呼吸(xi)速(su)率(lv)。實(shi)驗(yan)數(shu)據(ju)顯(xian)示(shi),高通(tong)量呼(hu)吸(xi)代謝測(ce)量系統能夠有(you)效(xiao)地測(ce)定蛹和幼(you)蟲的耗氧(yang)量,而(er)對於卵和空(kong)白對照(zhao)組則(ze)未(wei)觀(guan)察(cha)到顯著(zhu)的氧(yang)氣消(xiao)耗(hao)。隨後(hou),實驗(yan)進(jin)壹(yi)步(bu)研究了(le)成(cheng)年果蠅的呼吸(xi)率,特(te)別是二氧(yang)化(hua)碳(tan)麻(ma)醉對耗氧(yang)率(lv)的影響。數(shu)據(ju)顯(xian)示(shi),無論(lun)是未(wei)麻(ma)醉還(hai)是麻(ma)醉的果蠅,其耗氧(yang)率(lv)之(zhi)間(jian)沒(mei)有(you)明顯差異。
總(zong)之,高通(tong)量呼(hu)吸(xi)代謝測(ce)量系統能夠快(kuai)速(su)準確(que)地(di)測(ce)定果蠅不(bu)同(tong)生(sheng)命(ming)階(jie)段(duan)的氧(yang)氣消(xiao)耗(hao)率,為研究果蠅的呼吸(xi)代謝提(ti)供了(le)壹(yi)種有(you)效(xiao)的高通(tong)量方(fang)法(fa)。這(zhe)項技術(shu)的應用有(you)助於深入(ru)理解果蠅及(ji)其他(ta)昆(kun)蟲對環境變(bian)化的生(sheng)理響應,進(jin)而(er)為(wei)生(sheng)物(wu)學(xue)和生(sheng)態(tai)學(xue)研究提(ti)供重(zhong)要信(xin)息。
案(an)例(li)2:苜蓿(xu)切葉蜂(feng)代謝率(lv)測量
美國北(bei)達科(ke)他(ta)州立大學(xue)和美(mei)國(guo)農業(ye)部(bu)的研究團(tuan)隊,采(cai)用高通(tong)量呼(hu)吸(xi)代謝測(ce)量系統,結合(he)傳統的封(feng)閉(bi)系統呼吸(xi)測量方(fang)法(fa),對紫(zi)苜蓿(xu)切葉蜂(feng)幼(you)蟲在6~48℃範圍(wei)內的氧(yang)氣消(xiao)耗(hao)量進(jin)行了(le)測(ce)量,探(tan)索(suo)春季溫(wen)度(du)波動(dong)對紫(zi)苜蓿(xu)切葉蜂(feng)(Megachile rotundata)幼(you)蟲過(guo)程(cheng)中代謝率(lv)的影響。

結果顯示(shi),在20°C時,兩(liang)種(zhong)測量系統得到的數(shu)據(ju)沒有(you)統計學上的顯著差異,這(zhe)證實(shi)了(le)高通(tong)量呼(hu)吸(xi)代謝測(ce)量系統的有(you)效(xiao)性和可(ke)靠性。隨著溫(wen)度(du)的升(sheng)高,幼(you)蟲的代謝率(lv)呈現(xian)出(chu)非(fei)線性增長(chang),但在達到某(mou)壹(yi)高點後並(bing)未(wei)出(chu)現(xian)預期的下(xia)降(jiang),這(zhe)可能與(yu)實(shi)驗(yan)中使用的短暫高溫(wen)暴(bao)露時間(jian)有(you)關。
案(an)例(li)3:寒地(di)昆蟲呼(hu)吸(xi)代謝研究
為(wei)了(le)更(geng)好(hao)地(di)了(le)解昆(kun)蟲對環境的適應機制,Drew Evan Spacht博(bo)士(shi)團(tuan)隊對南極(ji)的南極(ji)蠓(Belgica antarctica)進(jin)行了(le)壹(yi)項細(xi)致(zhi)研究。他(ta)們在帕(pa)爾默(mo)站(zhan)周邊精心(xin)挑(tiao)選了(le)五(wu)種(zhong)具(ju)有(you)代表(biao)性(xing)的微(wei)棲息地進行樣(yang)本收(shou)集,這(zhe)些微(wei)棲息地在植(zhi)被、濕(shi)度(du)、養(yang)分(fen)和溫(wen)度(du)等關鍵生(sheng)態(tai)因(yin)素(su)上存(cun)在明(ming)顯(xian)差異。通(tong)過(guo)采用高精度的呼吸(xi)測量技術(shu),團(tuan)隊詳(xiang)細(xi)分(fen)析了(le)微(wei)環境變(bian)化對南極(ji)蠓生(sheng)理和代(dai)謝特(te)性的具體影(ying)響,並(bing)探討(tao)了(le)這(zhe)些昆(kun)蟲如(ru)何通(tong)過(guo)生(sheng)理上的適應策(ce)略來應對南極(ji)變(bian)化多(duo)端的氣候(hou)條(tiao)件(jian)。

實驗(yan)結果顯示(shi),不(bu)同(tong)微(wei)棲息地的幼(you)蟲表(biao)現(xian)出(chu)了(le)不(bu)同(tong)的代謝率(lv)。這(zhe)些代(dai)謝率(lv)的變(bian)化與(yu)幼(you)蟲的大小和它們所(suo)處(chu)的微(wei)棲息地的溫(wen)度(du)條(tiao)件(jian)有(you)關。具體來說(shuo),較小的幼(you)蟲在較溫(wen)暖(nuan)的微(wei)棲息地展現出(chu)了(le)較高的代謝率(lv),而較大的幼(you)蟲在較冷的微(wei)棲息地則(ze)顯(xian)示(shi)出(chu)較低的代謝率(lv)。此(ci)外,成(cheng)蟲的出(chu)現(xian)時間(jian)也(ye)因(yin)地(di)點而異(yi),暗示(shi)了(le)微(wei)棲息地條(tiao)件(jian)對南極(ji)昆(kun)蟲生(sheng)命(ming)周期的重要性(xing)。這(zhe)項研究強(qiang)調了(le)在預(yu)測(ce)南極(ji)生(sheng)態(tai)系統對環境變(bian)化響應時,考(kao)慮(lv)微(wei)觀(guan)環境異(yi)質性的重要性(xing)。
北(bei)京易科(ke)泰(tai)生(sheng)態(tai)技術(shu)有(you)限公(gong)司(si)為國(guo)內生(sheng)物(wu)能量代(dai)謝學(xue)、動物(wu)生(sheng)理生(sheng)態(tai)學(xue)研究、動(dong)物養(yang)殖學(xue)、魚類代謝與(yu)行為學(xue)、人(ren)類代謝醫(yi)學等研究提(ti)供全(quan)面的能量代(dai)謝研究技術(shu)方(fang)案(an):
(1)從低等土(tu)壤(rang)動物(wu)、昆蟲到高等脊(ji)椎動物(wu),從水生(sheng)到陸生(sheng)動(dong)物(wu)能量代(dai)謝測(ce)量全(quan)面解決(jue)方(fang)案(an)
(2)果蠅高通(tong)量能量代(dai)謝測(ce)量技術(shu)方(fang)案(an)
(3)家畜家禽能量代(dai)謝測(ce)量技術(shu)方(fang)案(an)
(4)大鼠(shu)、小鼠(shu)等實(shi)驗(yan)動(dong)物(wu)能量代(dai)謝測(ce)量技術(shu)方(fang)案(an)
(5)靈(ling)長類能量代(dai)謝測(ce)量技術(shu)方(fang)案(an)
(6)斑(ban)馬魚能量代(dai)謝測(ce)量技術(shu)方(fang)案(an)
(7)人(ren)體能量代(dai)謝測(ce)量技術(shu)方(fang)案(an)
(8)動物(wu)活(huo)動(dong)與(yu)生(sheng)理指標(biao)(體溫(wen)、心(xin)率(lv)等)監(jian)測(ce)技術(shu)方(fang)案(an)等
參考(kao)文獻:
1. Earls KN, Campbell JB, Rinehart JP, Greenlee KJ. Effects of temperature on metabolic rate during metamorphosis in the alfalfa leafcutting bee. Biol Open. 2023 Dec 15;12(12):bio060213. doi: 10.1242/bio.060213. Epub 2023 Dec 29. PMID: 38156711; PMCID: PMC10805150.
2. K Spacht DE, Gantz JD, Devlin JJ, McCabe EA, Lee RE Jr, Denlinger DL, Teets NM. Fine-scale variation in microhabitat conditions influences physiology and metabolism in an Antarctic insect. Oecologia. 2021 Oct;197(2):373-385. doi: 10.1007/s00442-021-05035-1. Epub 2021 Oct 1. PMID: 34596750.
3. Glass, B.H., Jones, K.G., Ye, A.C., Dworetzky, A.G., Barott, K.L., 2023. Acute heat priming promotes short-term climate resilience of early life stages in a model sea anemone. PeerJ 11, e16574.
4. Göpel, T., Burggren, W.W., 2024. Temperature and hypoxia trigger developmental phenotypic plasticity of cardiorespiratory physiology and growth in the parthenogenetic marbled crayfish, Procambarus virginalis Lyko, 2017. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 288, 111562.
5. Kämmer, N., Reimann, T., Ovcharova, V., Braunbeck, T., 2023. A novel automated method for the simultaneous detection of breathing frequency and amplitude in zebrafish (Danio rerio) embryos and larvae. Aquatic Toxicology 258, 106493.
6. Karlsson, K., Søreide, J.E., 2023. Linking the metabolic rate of individuals to species ecology and life history in key Arctic copepods. Mar Biol 170, 156.
7. Mathiron, A.G.E., Gallego, G., Silvestre, F., 2023. Early-life exposure to permethrin affects phenotypic traits in both larval and adult mangrove rivulus Kryptolebias marmoratus. Aquatic Toxicology 259, 106543.
8. Pettersen, A.K., Metcalfe, N.B., Seebacher, F., 2024. Intergenerational plasticity aligns with temperature-dependent selection on offspring metabolic rates. Philosophical Transactions of the Royal Society B: Biological Sciences 379, 20220496.
9. Powers, M.J., Baty, J.A., Dinga, A.M., Mao, J.H., Hill, G.E., 2022. Chemical manipulation of mitochondrial function affects metabolism of red carotenoids in a marine copepod (Tigriopus californicus). Journal of Experimental Biology 225, jeb244230.
10. Ricarte, M., Prats, E., Montemurro, N., Bedrossiantz, J., Bellot, M., Gómez-Canela, C., Raldúa, D., 2023. Environmental concentrations of tire rubber-derived 6PPD-quinone alter CNS function in zebrafish larvae. Science of The Total Environment 896, 165240.
11. Scovil, A.M., Boloori, T., de Jourdan, B.P., Speers-Roesch, B., 2023. The effect of chemical dispersion and temperature on the metabolic and cardiac responses to physically dispersed crude oil exposure in larval American lobster (Homarus americanus). Marine Pollution Bulletin 191, 114976.
12. Varshney, S., Lundås, M., Siriyappagouder, P., Kristensen, T., Olsvik, P.A., 2024. Ecotoxicological assessment of Cu-rich acid mine drainage of Sulitjelma mine using zebrafish larvae as an animal model. Ecotoxicology and Environmental Safety 269, 115796.






