服務(wu)熱(re)線(xian)
產品展示(shi)PRODUCTS
| 品牌(pai) | 其(qi)他品牌(pai) | 產地類別 | 進口 |
|---|---|---|---|
| 應(ying)用(yong)領(ling)域 | 環保(bao),農林(lin)牧漁(yu) |
DRL26C 樹(shu)木生長(chang)監測(ce)儀用(yong)於監(jian)測(ce)樹幹的生長(chang)微變化(hua),使樹(shu)的生長(chang)與水(shui)分關系(xi)的研究(jiu)變得更容易(yi)和更準確(que)。傳感器為不(bu)銹鋼和(he)防(fang)紫外(wai)線(xian)塑料制作,堅(jian)固耐(nai)用(yong),適合長(chang)期監(jian)測(ce),無須(xu)外(wai)接電(dian)池(chi)或(huo)太(tai)陽(yang)能(neng)板,內置(zhi)鋰(li)電(dian)池(chi)和(he)數(shu)據采集器,可記錄(lu)50000個(ge)數(shu)據,通(tong)過(guo)紅外(wai)數據輸出。儀器具有較高(gao)的分辨(bian)率(lv),可精確測(ce)量(liang)1微(wei)米莖(jing)桿的微變化(hua),為研(yan)究(jiu)樹(shu)木(mu)在(zai)白天,夜(ye)晚等(deng)氣候條件(jian)差異(yi)下的生長(chang)提供(gong)重要數據依據。
主(zhu)要優點(dian):
適用於(yu)直(zhi)徑大於8cm的任(ren)何(he)樹(shu)幹;
傳統機械與電(dian)子技術相(xiang)結合(he),測(ce)量(liang)更準確(que);
精度較(jiao)高(gao),分辨(bian)率(lv)1微(wei)米;
無(wu)損安(an)裝(zhuang)固定(ding);
導出(chu)數(shu)據格式為TXT、Excel
技術參(can)數(shu):
量(liang)程:64mm生(sheng)長(chang)量(liang)變化(hua)監測(ce)
分辨(bian)率(lv):0.001mm
誤(wu)差:量(liang)程2%
作(zuo)用力:15-20N
工(gong)作溫度:-30-60℃
工(gong)作濕度:0-100%
溫(wen)度傳感器精度:±2℃
重量(liang):300g
數(shu)據容量(liang):50000個(ge)數(shu)據(每小(xiao)時記(ji)錄(lu)1次(ci)則(ze)可自(zi)動(dong)記(ji)錄(lu)4年(nian))
采(cai)樣(yang)間(jian)隔(ge):10min-24hrs
電(dian)池(chi)壽(shou)命(ming):1hr間(jian)隔(ge)5年(nian);10mins間(jian)隔(ge)3年(nian);待機5.5年(nian)
通(tong)訊方(fang)式:無線(xian)紅外(wai)傳輸

植物(wu)生(sheng)理(li)生(sheng)態專業(ye)數(shu)據下載分析(xi)軟件,可進行(xing)數(shu)據下載、數(shu)據在線(xian)觀測(ce)、柱狀(zhuang)圖(tu)、數據修復、統計(ji)分析(xi)(如每小(xiao)時平(ping)均、每日(ri)平(ping)均、總計(ji)、最小(xiao)值(zhi)、最大值(zhi)、數據相關分析(xi)、回(hui)歸(gui)分析(xi))與圖(tu)表展示(shi)及(ji)系(xi)統(tong)設置(zhi)等(deng)

可選(xuan)配MicroLog三(san)通(tong)道土(tu)壤監測(ce)儀,實(shi)時、連(lian)續(xu)、原位監測(ce)土壤水分、溫度、水(shui)勢(shi)的變化(hua)

推薦(jian)系(xi)統(tong):樹(shu)木生理(li)生態系(xi)統(tong),同時對(dui)多棵(ke)樹木(mu)進行(xing)實(shi)時在(zai)線(xian)監測(ce),采集記(ji)錄(lu)樹木生長(chang)、樹皮(pi)溫(wen)度(陰(yin)面(mian)和陽(yang)面)、樹幹莖(jing)流等(deng)三(san)個(ge)生(sheng)理(li)指標(biao)的數據


產地:捷克
參(can)考(kao)文(wen)獻
1.Augustaitis, A. (2021). Intra-Annual Variation of Stem Circumference of Tree Species Prevailing in Hemi-Boreal Forest on Hourly Scale in Relation to Meteorology, Solar Radiation and Surface Ozone Fluxes. Atmosphere 12, 1017.
2.Bužková, R., Acosta, M., Dařenová, E., Pokorný, R., and Pavelka, M. (2015). Environmental factors influencing the relationship between stem CO2 efflux and sap flow. Trees 29, 333–343.
3.Dolezal, J., Kopecky, M., Dvorsky, M., Macek, M., Rehakova, K., Capkova, K., Borovec, J., Schweingruber, F., Liancourt, P., and Altman, J. (2019). Sink limitation of plant growth determines tree line in the arid Himalayas. Functional Ecology 33, 553–565.
4.Forner, A., Valladares, F., Bonal, D., Granier, A., Grossiord, C., and Aranda, I. (2018). Extreme droughts affecting Mediterranean tree species’ growth and water-use efficiency: the importance of timing. Tree Physiology 38, 1127–1137.
5.Jamnická, G., Konôpková, A., Fleischer, P., Kurjak, D., Petrík, P., Petek-Petrik, A., Húdoková, H., Homolová, Z., Ježík, M., and Ditmarová, Ľ. (2020). Physiological vitality of Norway spruce (Picea abies L.) stands along an altitudinal gradient in Tatra National Park. Central European Forestry Journal 66.
6.Ježík, M., Blaženec, M., Mezei, P., Sedmáková, D., Sedmák, R., Fleischer, P., Fleischer, P., Bošeľa, M., Kurjak, D., Střelcová, K., et al. (2021). Influence of weather and day length on intra-seasonal growth of Norway spruce (Picea abies) and European beech (Fagus sylvatica) in a natural montane forest. Can. J. For. Res. 51, 1799–1810.
7.Leštianska, A., Fleischer, P., Merganičová, K., Fleischer, P., and Střelcová, K. (2020a). Influence of Warmer and Drier Environmental Conditions on Species-Specific Stem Circumference Dynamics and Water Status of Conifers in Submontane Zone of Central Slovakia. Water 12, 2945.
8.Leštianska, A., Fleischer, P., Fleischer, P., Merganičová, K., and Střelcová, K. (2020b). Interspecific variation in growth and tree water status of conifers under water-limited conditions. Journal of Hydrology and Hydromechanics 68, 368–381.
9.Maicher, V., Sáfián, S., Murkwe, M., Delabye, S., Przybyłowicz, Ł., Potocký, P., Kobe, I.N., Janeček, Š., Mertens, J.E.J., Fokam, E.B., et al. (2020). Seasonal shifts of biodiversity patterns and species’ elevation ranges of butterflies and moths along a complete rainforest elevational gradient on Mount Cameroon. Journal of Biogeography 47, 342–354.
10.Nalevanková, P., Ježík, M., Sitková, Z., Vido, J., Leštianska, A., and Střelcová, K. (2018). Drought and irrigation affect transpiration rate and morning tree water status of a mature European beech (Fagus sylvatica L.) forest in Central Europe. Ecohydrology 11, e1958.
11.Obojes, N., Meurer, A., Newesely, C., Tasser, E., Oberhuber, W., Mayr, S., and Tappeiner, U. (2018). Water stress limits transpiration and growth of European larch up to the lower subalpine belt in an inner‐alpine dry valley. The New Phytologist 220, 460.
12.Qian-Wen, J.I., Cheng-Yang, Z., Lei, Z., and Fa-Xu, Z. (2020). Stem radial growth dynamics of Pinus sylvestris var. mongolica and their relationship with meteorological factor in Saihanba, Hebei, China. Chinese Journal of Plant Ecology 44, 257.
13.Raffelsbauer, V., Spannl, S., Peña, K., Pucha-Cofrep, D., Steppe, K., and Bräuning, A. (2019). Tree Circumference Changes and Species-Specific Growth Recovery After Extreme Dry Events in a Montane Rainforest in Southern Ecuador. Frontiers in Plant Science 10.
14.Řeháková, K., Čapková, K., Altman, J., Dančák, M., Majeský, Ľ., and Doležal, J. (2021). Contrasting Patterns of Soil Chemistry and Vegetation Cover Determine Diversity Changes of Soil Phototrophs Along an Afrotropical Elevation Gradient. Ecosystems 1–17.
15.Szymczak, S., Häusser, M., Garel, E., Santoni, S., Huneau, F., Knerr, I., Trachte, K., Bendix, J., and Bräuning, A. (2020). How Do Mediterranean Pine Trees Respond to Drought and Precipitation Events along an Elevation Gradient? Forests 11, 758.
16.Vospernik, S., Nothdurft, A., and Mehtätalo, L. (2020). Seasonal, medium-term and daily patterns of tree diameter growth in response to climate. Forestry: An International Journal of Forest Research 93, 133–149.
17.Winters, G., Otieno, D., Cohen, S., Bogner, C., Ragowloski, G., Paudel, I., and Klein, T. (2018). Tree growth and water-use in hyper-arid Acacia occurs during the hottest and driest season. Oecologia 188, 695–705.






