服(fu)務熱(re)線
產品(pin)展示(shi)PRODUCTS
| 品(pin)牌(pai) | 其(qi)他品(pin)牌(pai) | 價格區(qu)間(jian) | 面議 |
|---|---|---|---|
| 光譜(pu)範(fan)圍 | 近紅外(wai) | 按(an)探(tan)測(ce)器 | 其它(ta) |
SM9000光(guang)譜儀(yi)是(shi)壹(yi)種(zhong)高(gao)分辨(bian)率(lv)光(guang)纖(xian)光(guang)譜(pu)測(ce)量儀,測(ce)量範(fan)圍涵(han)蓋紫(zi)外(wai)光(guang)、可(ke)見(jian)光(guang)乃至(zhi)近(jin)紅外(wai)波段。SM9000既(ji)可以單獨使用(yong),也(ye)可以與FKM多(duo)光(guang)譜熒光(guang)動(dong)態顯微成(cheng)像(xiang)系統、FL3500雙調(tiao)制葉(ye)綠素熒光(guang)儀(yi)等(deng)儀(yi)器(qi)聯用(yong),測(ce)量各種(zhong)熒光(guang)的(de)光譜組(zu)成(cheng)。由於其具(ju)備(bei)超(chao)高(gao)的(de)靈(ling)敏(min)度,甚(shen)至(zhi)可(ke)以測(ce)量單個(ge)細胞(bao)激發(fa)熒光(guang)的(de)光譜。每(mei)秒可(ke)記(ji)錄(lu)100組(zu)16bits分辨(bian)率(lv)的(de)光譜數(shu)據。
功(gong)能(neng)特點(dian):
超(chao)高(gao)靈(ling)敏(min)度,可檢(jian)測(ce)單個(ge)細胞(bao)的(de)熒光(guang)光(guang)譜
- 超(chao)高(gao)分辨(bian)率(lv),可(ke)檢(jian)測(ce)10μs - 10ms的(de)閃(shan)光(guang)
- 采(cai)集頻率(lv)達(da)100次(ci)/秒,可(ke)檢(jian)測(ce)動態光(guang)譜(pu)
- 積分時間從1毫(hao)秒到(dao)數(shu)分鐘可調
- 模(mo)塊(kuai)化(hua)設(she)計,小巧(qiao)耐(nai)用(yong),熱(re)穩定性高(gao)
- 產熱(re)量極低(di)
技術參(can)數(shu):
- 光(guang)譜範(fan)圍:200 - 980nm
- 分辨(bian)率(lv):可(ke)檢(jian)測(ce)10μs - 10ms的(de)閃(shan)光(guang)
- 采(cai)集頻率(lv):100次(ci)/秒
- 積分時間:1毫(hao)秒到(dao)數(shu)分鐘可調
- 光(guang)學入口(kou):直(zhi)徑(jing)0.5,數(shu)值孔(kong)徑(NA)=0.22,可(ke)拆卸(xie)SMA接(jie)頭(tou)
- 入射(she)狹縫:70µm×1400µm
- 光(guang)柵:平(ping)場型校(xiao)正(zheng)
- 波長精(jing)確(que)度:< 0.5nm
- 再(zai)現(xian)性:< 0.1nm
- 溫(wen)度漂移(yi):< 0.01nm/K
- 像(xiang)素光(guang)譜距離(li):0.8nm
- FWHM半(ban)高(gao)寬(kuan):3 - 4nm
- 雜(za)散(san)光:0.1%(氙(xian)燈340nm測(ce)量)
- CCD陣(zhen)列像(xiang)素數(shu):1044×64
- 像(xiang)素尺(chi)寸:24×24mm2
- 系統數(shu)據:16Bit模(mo)數(shu)轉換
- 可(ke)聯用(yong)儀器(qi):FKM多(duo)光(guang)譜熒光(guang)動(dong)態顯微成(cheng)像(xiang)系統、FL3500雙調(tiao)制葉(ye)綠素熒光(guang)儀(yi)等(deng)
與FKM多(duo)光(guang)譜熒光(guang)動(dong)態顯微成(cheng)像(xiang)系統聯用(yong)的(de)SM9000
應用(yong)案例:
與FKM系統聯用(yong)研究銅指示(shi)植(zhi)物海州香薷(ru)Elsholtzia splendens的(de)葉綠素熒光(guang)及(ji)其(qi)光(guang)譜(pu)組(zu)成(cheng)(Peng,2013,Environ. Sci. Technol)
與FL3500系統聯用(yong)研究藍(lan)隱藻Guillardia theta的(de)葉綠素熒光(guang)及(ji)其(qi)光(guang)譜(pu)組(zu)成(cheng)(Cheregi,2015,Journal of Experimental Botany)
產地:歐(ou)洲
參(can)考(kao)文獻:
- Bernát G, et al. 2017. On the origin of the slow M–T chlorophyll a luorescence decline in cyanobacteria: interplay of short-term light-responses. Photosynthesis Research, DOI 10.1007/s11120-017-0458-8
- Selyanin V, et al. 2016. The variability of light-harvesting complexes in aerobic anoxygenic phototrophs. Photosynthesis research, 128(1): 35-43
- Tilstone G, et al. 2016. Effect of CO2 enrichment on phytoplankton photosynthesis in the North Atlantic sub-tropical gyre. Progress in Oceanography, 158: 76-89
- Mishra K B, et al. 2016. Plant phenotyping: a perspective. Indian Journal of Plant Physiology, 21(4): 514-527
- Cheregi O, Kotabová E, Prášil O, et al. 2015. Presence of state transitions in the cryptophyte alga Guillardia theta . Journal of Experimental Botany, 66: 6461-6470
- Li G, Brown C M, Jeans J A, et al. 2015. The nitrogen costs of photosynthesis in a diatom under current and future pCO2. New Phytologist, 205:533-543
- Kotabová E, Jarešová J, Kaňa R, et al. 2014. Novel type of red-shifted chlorophyll a antenna complex from Chromera velia. I. Physiological relevance and functional connection to photosystems. Biochimica et Biophysica Acta – Bioenergetics, 1837:734-743
- Šebela D, Olejníčková J, Sotolář R, et al. 2014. The slow S to M fluorescence rise in cyanobacteria is due to a state 2 to state 1 transition. BBA , 1817: 1237-1247
- Peng H, et al. 2013. Toxicity and Deficiency of Copper in Elsholtzia splendens Affect Photosynthesis Biophysics, Pigments and Metal Accumulation. Environ. Sci. Technol., 47 (12): 6120-6128






