服務熱線
產(chan)品展示(shi)PRODUCTS
| 品牌 | 其他(ta)品牌 | 產(chan)地(di)類(lei)別(bie) | 進口(kou) |
|---|---|---|---|
| 應用領域(yu) | 環(huan)保,生(sheng)物(wu)產(chan)業,農林(lin)牧(mu)漁(yu) |
FP-leaf葉(ye)夾式植(zhi)物光(guang)譜與葉(ye)綠素(su)熒(ying)光(guang)測量包(bao)用於(yu)測量葉(ye)片水平(ping)的(de)植(zhi)物葉(ye)綠素(su)熒(ying)光(guang)、葉(ye)片反(fan)射光(guang)譜及(ji)光(guang)譜指(zhi)數(shu)等(deng),包括手持(chi)式(shi)葉(ye)綠素(su)熒(ying)光(guang)測量儀(yi)和(he)植(zhi)物反(fan)射光(guang)譜測量儀(yi)。適(shi)於(yu)野(ye)外(wai)大(da)量(liang)樣(yang)品的(de)快(kuai)速檢測,廣泛(fan)應用於(yu)植(zhi)物脅(xie)迫(po)響(xiang)應、除(chu)草(cao)劑檢測,生(sheng)態毒理(li)生(sheng)物(wu)檢測、植(zhi)物反(fan)射光(guang)譜測量、色(se)素(su)組(zu)成變化、氮(dan)素(su)含(han)量變化、產(chan)量(liang)估(gu)測、生(sheng)態學、分(fen)子生(sheng)物(wu)學等(deng)。

測得的(de)數(shu)據以圖形(xing)或(huo)數(shu)據表的(de)形(xing)式(shi)實(shi)時(shi)顯(xian)示(shi)在儀器的(de)顯(xian)示(shi)屏上(shang)。這(zhe)些數(shu)據都(dou)可(ke)以(yi)儲(chu)存在儀器的(de)內(nei)存裏並傳(chuan)輸(shu)到(dao)電(dian)腦(nao)裏(li)。測量儀(yi)由(you)可(ke)充電(dian)鋰(li)電(dian)池供電(dian),不需要使(shi)用電(dian)腦(nao)即(ji)可(ke)獨(du)立進行(xing)測量。測量儀(yi)配(pei)備(bei)全彩(cai)色觸屏顯(xian)示(shi)器(qi)、內(nei)置光(guang)源、內(nei)置GPS和(he)用於(yu)固(gu)定樣品的(de)無損葉(ye)夾。
應用領域(yu):
適(shi)用於(yu)光(guang)合(he)作用研究和(he)教(jiao)學(xue),植(zhi)物及(ji)分(fen)子生(sheng)物(wu)學研究,農業、林(lin)業,生(sheng)物(wu)技術(shu)領(ling)域(yu)等(deng)。研究內(nei)容(rong)涉及(ji)光(guang)合(he)活(huo)性(xing)、脅迫(po)響(xiang)應、農藥(yao)藥(yao)效(xiao)測試、突變篩選、色(se)素(su)含(han)量評(ping)估等(deng)。
1.植(zhi)物光(guang)合(he)特性(xing)研究
2.光(guang)合(he)突變體篩選與表型研究
3.生(sheng)物(wu)和(he)非生(sheng)物(wu)脅迫(po)的(de)檢測
4.植(zhi)物抗(kang)脅迫(po)能力(li)或(huo)者(zhe)易(yi)感(gan)性(xing)研究
5.農業和(he)林業育(yu)種(zhong)、病(bing)害檢測、長勢(shi)與產(chan)量(liang)評(ping)估
6.除(chu)草(cao)劑檢測
7.色素(su)組(zu)成變化
8.氮(dan)素(su)含(han)量變化
9.產(chan)量(liang)估(gu)測
10.教(jiao)學(xue)

功能特(te)點 :
- 結構(gou)緊湊、便(bian)攜性(xing)強,光(guang)源、檢測器、控制(zhi)單元集(ji)成(cheng)於(yu)僅(jin)手(shou)機(ji)大(da)小(xiao)的(de)儀(yi)器(qi)內(nei)
- 功能強(qiang)大(da),具備了(le)大(da)型(xing)葉(ye)綠素(su)熒(ying)光(guang)儀和(he)反(fan)射光(guang)譜儀的(de)所(suo)有(you)功能,可(ke)以(yi)測量所(suo)有(you)葉(ye)綠素(su)熒(ying)光(guang)參數(shu)和(he)自動(dong)計(ji)算(suan)常(chang)用的(de)植(zhi)物反(fan)射光(guang)譜指(zhi)數(shu),同時提(ti)供熒(ying)光(guang)動力(li)學(xue)曲線圖和(he)高(gao)精度(du)反(fan)射光(guang)譜圖
- 葉(ye)綠素(su)熒(ying)光(guang)檢測內(nei)置了(le)所(suo)有(you)通用實(shi)驗程序(xu),包(bao)括3套(tao)熒(ying)光(guang)淬(cui)滅分(fen)析(xi)程序、3套(tao)光(guang)響應曲線程序(xu)、OJIP快(kuai)速熒(ying)光(guang)動力(li)學(xue)曲線等(deng)
- 葉(ye)綠素(su)熒(ying)光(guang)檢測具備高(gao)時間分(fen)辨率(lv),可(ke)達10萬次(ci)每秒,自動(dong)繪出(chu)OJIP曲線並給(gei)出26個(ge)OJIP–test參(can)數(shu)
- 專(zhuan)業軟件功能強(qiang)大(da):葉(ye)綠素(su)熒(ying)光(guang)分(fen)析(xi)軟件可下(xia)載、展(zhan)示(shi)葉(ye)綠素(su)熒(ying)光(guang)參數(shu)圖表(biao),也(ye)可(ke)以(yi)通過軟件直接(jie)控制(zhi)儀器(qi)進行(xing)測量;植(zhi)物光(guang)譜分(fen)析(xi)軟件可以(yi)自動(dong)計(ji)算(suan)內(nei)置植(zhi)被(bei)指(zhi)數(shu)、計(ji)算(suan)用戶自(zi)定義植(zhi)被(bei)指(zhi)數(shu)、實(shi)時(shi)顯(xian)示(shi)數(shu)據圖和(he)數(shu)據表
- 葉(ye)綠素(su)熒(ying)光(guang)檢測具備無人(ren)值(zhi)守自動監(jian)測功能
- 具備GPS模(mo)塊,輸出帶(dai)時間戳和(he)地(di)理(li)位(wei)置的(de)葉(ye)綠素(su)熒(ying)光(guang)參數(shu)圖表(biao)和(he)反(fan)射光(guang)譜數(shu)據




應用案例 1:

歐(ou)盟(meng)委(wei)員(yuan)會聯(lian)合(he)研究中(zhong)心通過無人(ren)機(ji)遙(yao)測技術(shu)研究葉(ye)緣焦枯病(bing)菌(jun)在橄欖(lan)樹中(zhong)的(de)感(gan)染(ran)。同時通過FluorPen葉(ye)綠素(su)熒(ying)光(guang)儀和(he)RP400光(guang)譜儀直(zhi)接(jie)檢測葉(ye)片的(de)葉(ye)綠素(su)熒(ying)光(guang)和(he)反(fan)射光(guang)譜植(zhi)被(bei)指(zhi)數(shu),用於(yu)對(dui)照(zhao)修(xiu)正無人(ren)機(ji)遙(yao)測數(shu)據。研究結果(guo)發表(biao)在《Nature Plants》(Zarco-Tejada,2018)。
應用案例 2:
水稻灌(guan)漿期的(de)夜(ye)間高(gao)溫會顯(xian)著(zhu)影(ying)響(xiang)水稻的(de)產(chan)量(liang)。捷(jie)克科學院研究中(zhong)心與水稻研究所(suo)合(he)作研究夜(ye)間高(gao)溫對(dui)成(cheng)熟水稻穗光(guang)學特(te)性(xing)的(de)變化追(zhui)蹤。研究者(zhe)使用FluorPen手持(chi)式葉(ye)綠素(su)熒(ying)光(guang)儀測量了(le)光(guang)合(he)系統有(you)效(xiao)光(guang)化學(xue)效(xiao)率(lv)ΦII(也(ye)稱為(wei)有效(xiao)量(liang)子產(chan)額(e)QY或(huo)ΦPSII)和(he)穩態熒(ying)光(guang)Fs。同時(shi)使(shi)用PolyPen手持(chi)式植(zhi)物反(fan)射光(guang)譜測量儀(yi)的(de)前(qian)期(qi)型(xing)號WinePen測量了(le)反(fan)射光(guang)譜曲線,並計(ji)算(suan)了(le)PRI、mSR705、mND705、R470/R570、R520/R675等(deng)9項植(zhi)被(bei)指(zhi)數(shu)。這(zhe)些植(zhi)被(bei)指(zhi)數(shu)與水稻葉(ye)片/穗的(de)光(guang)合(he)能力(li)、穩(wen)態熒(ying)光(guang)、葉(ye)綠素(su)濃(nong)度(du)等(deng)緊密相關(guan)(Gil-Ortiz R et al. 2020)。

參(can)考文獻:
- Singh, S., Mohan Prasad, S. & Pratap Singh, V. Additional calcium and sulfur manages hexavalent chromium toxicity in Solanum lycopersicum L. and Solanum melongena L. seedlings by involving nitric oxide. Journal of Hazardous Materials 398, 122607 (2020).
- Ariyarathna, R. a. I. S., Weerasena, S. L. & Beneragama, C. K. Application of Polyphasic OJIP Chlorophyll Fluorescent Transient Analysis as an Indicator for Testing of Seedling Vigour of Common Bean (Phaseolus vulgaris L.). Tropical Agricultural Research 31, 106–115 (2020).
- Prity, S. A. et al. Arbuscular mycorrhizal fungi mitigate Fe deficiency symptoms in sorghum through phytosiderophore-mediated Fe mobilization and restoration of redox status. Protoplasma (2020) doi:10.1007/s00709-020-01517-w.
- Rahman, M. A. et al. Arbuscular Mycorrhizal Symbiosis Mitigates Iron (Fe)-Deficiency Retardation in Alfalfa (Medicago sativa L.) Through the Enhancement of Fe Accumulation and Sulfur-Assisted Antioxidant Defense. International Journal of Molecular Sciences 21, 2219 (2020).
- Vitorino, L. C. et al. Biocontrol Potential of Sclerotinia sclerotiorum and Physiological Changes in Soybean in Response to Butia archeri Palm Rhizobacteria. Plants 9, 64 (2020).
- Kasampalis, D. S., Tsouvaltzis, P. & Siomos, A. S. Chlorophyll fluorescence, non-photochemical quenching and light harvesting complex as alternatives to color measurement, in classifying tomato fruit according to their maturity stage at harvest and in monitoring postharvest ripening during storage. Postharvest Biology and Technology 161, 111036 (2020).
- Soares, J. S., Santiago, E. F. & Sorgato, J. C. Conservation of Schomburgkia crispa Lindl. (Orchidaceae) by reintroduction into a fragment of the Brazilian Cerrado. Journal for Nature Conservation 53, 125754 (2020).
- Poblete, T. et al. Detection of Xylella fastidiosa infection symptoms with airborne multispectral and thermal imagery: Assessing bandset reduction performance from hyperspectral analysis. ISPRS Journal of Photogrammetry and Remote Sensing 162, 27–40 (2020).
- Chiluwal, A. et al. Deterioration of ovary plays a key role in heat stress-induced spikelet sterility in sorghum. Plant, Cell & Environment 43, 448–462 (2020).
- Maai, E., Nishimura, K., Takisawa, R. & Nakazaki, T. Diurnal changes in chloroplast positioning and photosynthetic traits of C4 grass finger millet. Plant Production Science 0, 1–13 (2020).
- De Micco, V. et al. Dust accumulation due to anthropogenic impact induces anatomical and photochemical changes in leaves of Centranthus ruber growing on the slope of the Vesuvius volcano. Plant Biol J 22, 93–102 (2020).
- Gil-Ortiz R et al. 2020. New Eco-Friendly Polymeric-Coated Urea Fertilizers Enhanced Crop Yield in Wheat. Agronomy 10: 438
- Zarco-Tejada, P. J., Camino, C., Beck, P. S. A., Calderon, R., Hornero, A., et al. 2018. Previsual symptoms of Xylella fastidiosa infection revealed in spectral plant-trait alterations. Nature Plants, 4(7), 4 ts, 4(7), 432–439.
- Poblete, T., Camino, C., Beck, P. S. A.,A., Hornero, A., et al. 2020. Detection of Xylella fastidiosa in fastidiosa infection symptoms with airborne multispectr tral and thermal imagery: Assessing bandset redu eduction performance from hyperspectral analysis. ISPRS Journal of urnal of Photogrammetry and Remote Sensing, 162, 27–40.
- Junker L. V., Rascher U., Jaenicke H., et al. 2019. Detection of plant stress responses in aphid-infested lettuce using non-invasive detection methods. Integrated Protection in Field Vegetables IOBC OBC-WPRS Bulletin Vol.142, 2019 . 8-16 8
- Wu, L.B., Holtkamp, F., Wairich, A., & Frei, M. 2019. Potassium Ion Channel Gene OsAKT1 Affects Iron Translocation in Rice Plants Exposed to Iron Toxicity. Frontiers in Plant Science, 10.
- Bartak, M., Hajek, J., Morkusova, J., et al. 2018. Dehydration-induced changes in spec pectral reflectance indices and chlorophyll fluorescence of Antarctic e of Antarctic lichens with different thallus color, and intrathall intrathalline photobiont. Acta Physiologiae Plantarum, 40(10 10).
- Bartak, M., Mishra, K.B., Mareckova A, M. 2018. Spectral reflectance indices sense desiccation induced changes in the thalli of Antarctic lichen Dermatocarpon polyphyllizum. Czech Polar Reports 8 (2): 249-259.
- Gálvez, S., Mérida-García, R., Camino Ino, C. et al. 2018. Hotspots in the genomic architectu hitecture of field droughtresponses in wheat as breeding targets. Functional & Integrative Genomics.
- Nuttall, J. G., Perry, E. M., Delahunt Ty, A. J. et al. 2018. Frost response in wheat and early detection using proximal sensors. Journal of Agrono f Agronomy and Crop Science, 205(2), 220–234.
- Sytar O., Zivcak M., Olsovska K., Breststic M. 2018 Perspectives in High-Throughput Phenotyping of Qualitative Traits at the Whole-Plant Level. In: Sengar R., Singh A. (eds) Eco-friendly Agro-biolog logical Techniques for Enhancing Crop Productivity. Springer, Singapore.






