服(fu)務熱(re)線(xian)
產品展(zhan)示PRODUCTS
| 品牌(pai) | 其(qi)他品牌(pai) | 價格(ge)區間(jian) | 面議 |
|---|---|---|---|
| 產地類(lei)別 | 進(jin)口(kou) | 應(ying)用領(ling)域 | 醫療(liao)衛(wei)生,生物產業(ye) |
背景(jing)
FMS系(xi)列(lie)能量代謝監測(ce)系(xi)統(tong)方案(an)作為SSI家(jia)族(zu)壹款經典(dian)、堅(jian)固(gu)耐(nai)用、多(duo)用途(tu)的高精度高分辨率代謝測(ce)量主機,受到(dao)以各(ge)類昆(kun)蟲、實(shi)驗(yan)動(dong)物、小(xiao)型(xing)及(ji)中大型(xing)野(ye)生動(dong)物、家(jia)禽(qin)家(jia)畜(chu)、人(ren)體等為研究(jiu)對(dui)象的生理(li)學、生(sheng)態健(jian)康、生物醫(yi)學科學家(jia)的極(ji)度青睞(lai)。FMS的(de)再(zai)度升級(ji)改版(ban),以(yi)更(geng)小體(ti)積(ji)、更(geng)大的(de)數(shu)據儲(chu)存(cun)容量、智能化大觸(chu)摸(mo)屏、更(geng)簡(jian)化的(de)操(cao)作、更(geng)合(he)理(li)的(de)價格(ge)將再(zai)次(ci)引(yin)爆專(zhuan)註(zhu)於(yu)實(shi)驗(yan)研究(jiu)科學家(jia)靈活機(ji)動(dong)的創新(xin)性生(sheng)物新(xin)陳(chen)代謝研究(jiu)熱情(qing)。

應(ying)用領(ling)域
野(ye)生動(dong)物(含(han)媒介(jie)動(dong)物)適(shi)應(ying)環(huan)境的(de)行為、生理(li)、進(jin)化(hua)等研究(jiu)
以(yi)實(shi)驗(yan)動(dong)物為模型(xing)的(de)肥胖(pang)、心(xin)血(xue)管(guan)、糖尿病(bing)、衰老等健(jian)康研究(jiu)
以(yi)家畜(chu)家禽(qin)等經濟動(dong)物為研究(jiu)對(dui)象的營養(yang)學、溫室(shi)氣(qi)體(ti)排放(fang)等研究(jiu)
以(yi)人(ren)體為研究(jiu)對(dui)象的運動(dong)生理(li)學、環(huan)境模擬(ni)生(sheng)理(li)學、特(te)殊人(ren)群(qun)營(ying)養學等健(jian)康研究(jiu)
技(ji)術(shu)特(te)點(dian)
全新(xin)迷(mi)妳(ni)型主機,堅(jian)固(gu)的(de)外(wai)殼,帶搬(ban)運手(shou)柄(bing),具(ju)有(you)最(zui)大的(de)便(bian)攜性,可(ke)在(zai)各(ge)種(zhong)復(fu)雜野(ye)外(wai)環(huan)境條(tiao)件(jian)下(xia)現場(chang)使(shi)用
面板32GB SD卡(ka)數據(ju)存(cun)儲允(yun)許即時(shi)存(cun)儲信(xin)息(xi),而(er)無(wu)需(xu)單(dan)獨(du)的(de)計(ji)算機(ji)
溫度氣壓自動(dong)補償,消(xiao)除(chu)環(huan)境溫度氣壓變化(hua)引(yin)起(qi)的誤差
8通(tong)道模擬(ni)信(xin)號(hao)輸(shu)入,可(ke)兼(jian)容(rong)其(qi)它分析(xi)儀(yi)或傳(chuan)感器,4通(tong)道溫度輸(shu)入
超(chao)大觸(chu)摸(mo)屏實(shi)時(shi)顯示儀(yi)器各(ge)參數,可(ke)同(tong)時(shi)顯(xian)示氧(yang)氣(qi)、二(er)氧化(hua)碳(tan)、水汽(qi)壓(ya)、大氣(qi)壓(ya)、相對(dui)濕度、模擬(ni)輸(shu)入信(xin)號(hao)、儲存(cun)大小(xiao)、取(qu)樣(yang)情(qing)況、日期時間(jian)序(xu)列(lie)等數(shu)據(ju)
具(ju)備功能強大的(de)擴展(zhan)端口(kou),可(ke)以(yi)組(zu)成(cheng)多(duo)通(tong)道或各(ge)種(zhong)因(yin)素控(kong)制(zhi)的(de)全面新(xin)陳(chen)代謝監測(ce)系(xi)統(tong)
具(ju)備電源線(xian)或鋰離(li)子電池(chi)包(4.8 A-H),野(ye)外(wai)運(yun)行時(shi)間(jian)至少6小(xiao)時

技(ji)術(shu)指(zhi)標
1.傳(chuan)感器:O2分(fen)析(xi)儀(yi),燃料(liao)電池(chi)技(ji)術(shu),使(shi)用壽命(ming)約(yue)2年(nian),燃(ran)料(liao)電池(chi)可(ke)更(geng)換(huan);CO2分(fen)析(xi)儀(yi),無(wu)色(se)散(san)雙(shuang)波(bo)長(chang)紅外(wai)氣體(ti)分(fen)析(xi)儀(yi);水汽(qi)分(fen)析(xi)儀(yi),薄(bo)膜(mo)電容(rong)傳(chuan)感器
2.測(ce)量範圍:O2,0 - 100%;大氣(qi)壓(ya),30-110 kPa;CO2,0 – 5%;水(shui)汽壓(ya),0-100% RH(無(wu)凝(ning)結),溫度0-100°C
3.精度:O2:2-100%讀數的(de)0.1%;CO2:0-5%讀數的(de)1%;H2O:0-95% RH讀數的(de)1%,95-100%優(you)於(yu)2%;溫度 0.2˚ C
4.分(fen)辨率:O2: 0.001%;CO2: 0.0001%-0.01%;H2O: 0.001%RH
5.信(xin)號漂(piao)移(yi):溫度恒定的情(qing)況下(xia)O2: <0.02%每(mei)小時(shi);CO2: <0.001%每(mei)小時(shi);H2O: < 0.01%RH每(mei)小時(shi)
6.信(xin)號輸(shu)入:八個標(biao)準電壓(ya)雙(shuang)極模擬(ni)輸(shu)入,四(si)個(ge)溫度輸(shu)入
7.模擬(ni)輸(shu)出:O2, CO2, 2個(ge)自定義
8.數(shu)字控(kong)制輸(shu)出:8個(ge)TTL邏輯信號(hao)
9.數(shu)字輸(shu)出:USB 到(dao)RS-232,Sablebus快速接口(kou)
10.內(nei)置(zhi)存(cun)儲器(qi):SD存(cun)儲卡(ka),可(ke)達32GB
11.存(cun)儲時(shi)間(jian)間(jian)隔(ge):0.1sec到(dao)1hr用戶(hu)自定義
12.氣(qi)流流(liu)量:10-1500mL/min
13.流(liu)量控制精度:讀數的(de)2%
14.流(liu)量分辨率:0-99.9mL/min為0.1mL/min;100mL/min 以(yi)上(shang)為1mL/min
15.工(gong)作溫度:3-50 °C,無(wu)冷(leng)凝(ning)
16.供(gong)電:12-15 VDC,帶220V交(jiao)流電適(shi)配器;可(ke)選(xuan)配鋰電池(chi)供(gong)電,方便(bian)野(ye)外(wai)操(cao)作。
17.尺寸:35cm×30cm×15cm
18.重量:4kg
19.呼(hu)吸(xi)室(shi)和(he)代謝測(ce)量方案(an)定制(如下(xia)圖(tu))

典型應(ying)用壹(yi)
Comparison of the CO2 ventilatory response through development in three rodent species: Effect of fossoriality,Sprenger R J, Kim A B, Dzal Y A, et al. Respiratory physiology & neurobiology, 2019, 264: 19-27.

典型應(ying)用二(er)
Greater energy demand of exercise during pregnancy does not impact mechanical efficiency,Denize K M, Akbari P, da Silva D F, et al. Applied Physiology, Nutrition, and Metabolism, 2019.
美(mei)國(guo)婦產科學院(yuan)和加(jia)拿大的(de)婦產科醫生協(xie)會發(fa)表(biao)了最(zui)新(xin)的(de)孕婦活動(dong)指(zhi)南,建議孕婦進(jin)行(xing)150分(fen)鐘(zhong)中等強度運動(dong)以減(jian)少(shao)妊(ren)娠並(bing)發(fa)癥,有(you)利於(yu)母體和嬰兒的(de)健(jian)康。然而(er)懷孕(yun)(嬰兒作(zuo)為特殊(shu)負(fu)重)是(shi)如何(he)影(ying)響孕(yun)婦的能量投(tou)入、活(huo)動(dong)體能(neng)和(he)機(ji)械效率(lv)的卻(que)了解(jie)很少。該研究(jiu)通(tong)過FMS便(bian)攜式(shi)能量代謝儀(yi)來定量化不(bu)同運(yun)動(dong)程序(xu)的(de)能(neng)量消耗和機(ji)械(xie)效(xiao)率。

產地
美(mei)國(guo)
部分參考文獻(xian)
1.Charters J E, Heiniger J, Clemente C J, et al. Multidimensional analyses of physical performance reveal a size‐dependent trade‐off between suites of traits[J]. Functional Ecology, 2018, 32(6): 1541-1553.
2.Cochran J P, Haskins D L, Eady N A, et al. Coal combustion residues and their effects on trace element accumulation and health indices of eastern mud turtles (Kinosternon subrubrum)[J]. Environmental Pollution, 2018, 243: 346-353.
3.de Melo Costa C C, Maia A S C, Nascimento S T, et al. Thermal balance of Nellore cattle[J]. International journal of biometeorology, 2018, 62(5): 723-731.
4.Denize, Kathryn M., et al. "Greater energy demand of exercise during pregnancy does not impact mechanical efficiency." Applied Physiology, Nutrition, and Metabolism ja (2019).
5.Fernandes M H M R, Lima A R C, Almeida A K, et al. Fasting heat production of S aanen and A nglo N ubian goats measured using open‐circuit facemask respirometry[J]. Journal of animal physiology and animal nutrition, 2017, 101(1): 15-21.
6.Fonseca V C, Saraiva E P, Maia A S C, et al. Models to predict both sensible and latent heat transfer in the respiratory tract of Morada Nova sheep under semiarid tropical environment[J]. International journal of biometeorology, 2017, 61(5): 777-784.
7.Friesen C R, Johansson R, Olsson M. Morph‐specific metabolic rate and the timing of reproductive senescence in a color polymorphic dragon[J]. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 2017, 327(7): 433-443.
8.Guigueno M F, Head J A, Letcher R J, et al. Early life exposure to triphenyl phosphate: Effects on thyroid function, growth, and resting metabolic rate of Japanese quail (Coturnix japonica) chicks[J]. Environmental pollution, 2019, 253: 899-908.
9.Haskins D L, Hamilton M T, Stacy N I, et al. Effects of selenium exposure on the hematology, innate immunity, and metabolic rate of yellow-bellied sliders (Trachemys scripta scripta)[J]. Ecotoxicology, 2017, 26(8): 1134-1146.
10.Ivy C M, York J M, Lague S L, et al. Validation of a pulse oximetry system for high-altitude waterfowl by examining the hypoxia responses of the Andean goose (Chloephaga melanoptera)[J]. Physiological and Biochemical Zoology, 2018, 91(3): 859-867.
11.Ladds M A, Slip D J, Harcourt R G. Swimming metabolic rates vary by sex and development stage, but not by species, in three species of Australian otariid seals[J]. Journal of Comparative Physiology B, 2017, 187(3): 503-516.
12.Lenard A, Gifford M E. Mechanisms Influencing Countergradient Variation in Prairie Lizards, Sceloporus consobrinus[J]. Journal of Herpetology, 2019, 53(3): 196-203.
13.Louppe V, Courant J, Videlier M, et al. Differences in standard metabolic rate at the range edge versus the center of an expanding invasive population of Xenopus laevis in the West of France[J]. Journal of Zoology, 2018, 305(3): 163-172.
14.Maia A S C, Nascimento S T, Carvalho M D, et al. Enteric methane emission of Jersey dairy cows: an investigation on circadian pattern[C]//21ST INTERNATIONAL CONGRESS OF BIOMETEOROLOGY. 2017: 100.
15.Nascimento C C N, de França Carvalho Fonsêca V, de Melo Costa C C, et al. Respiratory functions and adaptation: an investigation on farm animals bred in tropical environment[J]. 2017.
16.Noren D P, Holt M M, Dunkin R C, et al. Echolocation is cheap for some mammals: Dolphins conserve oxygen while producing high-intensity clicks[J]. Journal of experimental marine biology and ecology, 2017, 495: 103-109.
17.Otálora-Ardila A, Flores-Martínez J J, Welch K C. The effect of short-term food restriction on the metabolic cost of the acute phase response in the fish-eating Myotis (Myotis vivesi)[J]. Mammalian Biology, 2017, 82(1): 41-47.
18.Sanguino R A. Rapamycin Interacts with Nutrition to Decrease Basal MetabolicRate of Drosophila melanogaster[M]. Adelphi University, 2017.
19.Sprenger R J, Kim A B, Dzal Y A, et al. Comparison of the CO2 ventilatory response through development in three rodent species: Effect of fossoriality[J]. Respiratory physiology & neurobiology, 2019, 264: 19-27.
20.Toler M. Kinetics and Energetics of Feeding Behaviors in Daubentoniamadagascariensis[D]. Duke University, 2017.






