服務熱(re)線
產(chan)品(pin)展(zhan)示PRODUCTS
| 品(pin)牌 | PSI | 價(jia)格(ge)區(qu)間 | 面(mian)議 |
|---|---|---|---|
| 產(chan)地(di)類別 | 進(jin)口(kou) | 應(ying)用(yong)領(ling)域(yu) | 環(huan)保(bao),生物(wu)產(chan)業(ye),農(nong)林(lin)牧漁(yu),能(neng)源,綜(zong)合 |
藻類高通量(liang)光(guang)合作(zuo)用(yong)測(ce)量(liang)系統具(ju)備(bei)葉(ye)綠素(su)熒(ying)光(guang)成像和光(guang)合放(fang)氧(yang)測量(liang)的功(gong)能,通過(guo)測(ce)定(ding)微(wei)藻的(de)葉(ye)綠素(su)熒(ying)光(guang)參數(shu)和(he)氣體(ti)交(jiao)換(huan)參數(shu),評(ping)價(jia)其(qi)光(guang)化(hua)學轉(zhuan)化(hua)效率和光(guang)合速率(lv),全面(mian)評估微(wei)藻光(guang)合作(zuo)用(yong)物(wu)質(zhi)和(he)能(neng)量(liang)的轉(zhuan)化(hua)。系統具(ju)備(bei)快速、高通量(liang)的特(te)點(dian),可(ke)同(tong)時(shi)對96個樣品(pin)進(jin)行(xing)測量(liang)。系統廣(guang)泛用(yong)於(yu)藻類光(guang)合生理(li)研(yan)究(jiu)、藻類突變(bian)體(ti)篩(shai)選(xuan)、藻類遺傳(chuan)改良、藻類養(yang)殖、汙(wu)水(shui)處理(li)、生物(wu)燃料(liao)和生物(wu)肥(fei)料(liao)的(de)制(zhi)造等(deng)研究(jiu)和應(ying)用(yong)領(ling)域(yu)。

功(gong)能特(te)點(dian)
l 高通量(liang):近(jin)百(bai)個(ge)樣(yang)品(pin)同(tong)時(shi)測(ce)量(liang)
l 全面(mian)評價(jia)光(guang)合作(zuo)用(yong):藻類葉(ye)綠素(su)熒(ying)光(guang)參數(shu)和(he)光(guang)合速率(lv)均可(ke)測(ce)定
l 非侵(qin)入(ru)性和非破壞(huai)性測量(liang)
l 系統簡單(dan)易用(yong)
l 氧氣測(ce)量(liang)高精(jing)度(du)、高可(ke)靠(kao)性、低(di)功(gong)耗、低(di)交(jiao)叉(cha)敏感性、快速響應(ying)時(shi)間
技術參數(shu)
1. 測量(liang)參數(shu):Fo, Fo’, Fs, Fm, Fm’, Fp, FtDn, FtLn, Fv, Fv'/ Fm', Fv/ Fm, Fv', Ft,ΦPSII, NPQ_Dn, NPQ_Ln, Qp_Dn, Qp_Ln, qN, qL, QY, QY_Ln, Rfd, ETR等(deng)50多個(ge)葉(ye)綠素(su)熒(ying)光(guang)參數(shu)以(yi)及(ji)光(guang)合速率(lv)、呼吸速率(lv)
2. 可(ke)同(tong)時(shi)對近(jin)百(bai)個(ge)藻類樣品(pin)進(jin)行(xing)測量(liang)
3. 葉(ye)綠素(su)熒(ying)光(guang)成像單元具(ju)備(bei)完(wan)備(bei)的(de)自(zi)動(dong)測量(liang)程序(protocol),可(ke)自(zi)由(you)對自動(dong)測量(liang)程序進(jin)行(xing)編輯(ji),包括Fv/Fm、Kautsky誘導效(xiao)應(ying)、熒(ying)光(guang)淬滅(mie)分析(xi)、光(guang)響應(ying)曲(qu)線LC。
4. 葉(ye)綠素(su)熒(ying)光(guang)數據分(fen)析(xi)模(mo)式(shi):具(ju)備(bei)在(zai)低(di)信噪(zao)比(bi)的情(qing)況下使用(yong)的(de)“信號平均再計算"模(mo)式(shi),以過(guo)濾掉(diao)噪(zao)音(yin)帶(dai)來的誤(wu)差(cha),適用(yong)於(yu)低(di)濃度(du)的藻類樣品(pin)。
5. 葉(ye)綠素(su)熒(ying)光(guang)成像分析(xi)軟件功(gong)能:具(ju)Live(實況測試(shi))、Protocols(實驗程序選(xuan)擇定(ding)制(zhi))、Pre–processing(成像預(yu)處理(li))、Result(成像分析(xi)結(jie)果(guo))等(deng)功(gong)能菜單(dan)
6. 葉(ye)綠素(su)熒(ying)光(guang)成像預(yu)處理(li):程(cheng)序軟件可(ke)自(zi)動(dong)識(shi)別多個(ge)植(zhi)物(wu)樣(yang)品(pin)或多個(ge)區(qu)域(yu),也可(ke)手動(dong)選(xuan)擇區(qu)域(yu)(Region of interest,ROI)。手動(dong)選(xuan)區(qu)的形狀(zhuang)可(ke)以(yi)是方形、圓(yuan)形、任意(yi)多邊(bian)形或(huo)扇形。軟(ruan)件可(ke)自(zi)動(dong)測量(liang)分析(xi)每個(ge)樣品(pin)和選(xuan)定區(qu)域(yu)的(de)熒(ying)光(guang)動(dong)力(li)學曲(qu)線及(ji)相應(ying)參數(shu),樣(yang)品(pin)或區(qu)域(yu)數(shu)量(liang)不(bu)受(shou)限(xian)制(zhi)(>1000)
7. 氧氣檢(jian)測技術:光(guang)纖(xian)氧(yang)傳(chuan)感器技術。
8. 測量(liang)呼吸室:透(tou)明(ming)聚苯乙(yi)烯(xi)材質(zhi),支(zhi)持(chi)預(yu)消毒處理(li),可(ke)重(zhong)復(fu)使用(yong)。
9. 氧氣測(ce)量(liang)主機(ji):單(dan)個重(zhong)670 g,162 x 102 x 32 mm
10. 氧氣主機(ji)內(nei)置溫度傳(chuan)感器:0-50°C,分辨率0.012°C,精度±0.5°C
11. 氧氣主機(ji)內置壓強傳(chuan)感器:300-1100mbar,分辨率0.11mbar,精度±6mbar
12. 氧氣最大采(cai)樣(yang)頻(pin)率(lv):單通道激活(huo)時(shi)可(ke)達(da)10-20次每秒(miao)
13. 氧氣測(ce)量(liang)精度:±0.1% O2@1% O2或±0.05 mg/L@0.44 mg/L
14. 氧氣測(ce)量(liang)分辨率:0.01% O2@1% O2或0.005 mg/L@0.44 mg/L
15. 測量(liang)通道數:96
應(ying)用(yong)案(an)例(li)
1. Perin等(deng)人采(cai)用(yong)藻類高通量(liang)光(guang)合作(zuo)用(yong)測(ce)量(liang)系統初步(bu)篩(shai)選(xuan)微(wei)擬球藻(Nannochloropsis gaditana)的高光(guang)效突(tu)變(bian)體(ti)。研究小組使用(yong)化(hua)學引變(bian)劑(ji)乙(yi)基甲烷(wan)磺(huang)酸(suan)鹽(EMS)誘導突(tu)變(bian)和(he)插(cha)入(ru)突變(bian)兩種(zhong)方(fang)式(shi)生成突(tu)變(bian)體(ti)庫(ku),使用(yong)葉(ye)綠素(su)熒(ying)光(guang)成像技術檢(jian)測其(qi)光(guang)合活(huo)性(xing)的可(ke)能(neng)變(bian)化(hua),使用(yong)的(de)葉(ye)綠素(su)熒(ying)光(guang)參數(shu)包括最小熒(ying)光(guang)F0、最大光(guang)化(hua)學效率Fv/Fm、有(you)效(xiao)光(guang)化(hua)學效率ΦPSII、光(guang)系統調節(jie)能力(li)NPQ(Perin et al., 2015)。

2. 不(bu)列(lie)顛(dian)哥倫(lun)比(bi)亞(ya)大學生物(wu)多樣(yang)性(xing)研(yan)究(jiu)中心(xin)使用(yong)了藻類高通量(liang)光(guang)合作(zuo)用(yong)測(ce)量(liang)系統評估了全球(qiu)變(bian)暖(nuan)對斜(xie)生柵藻(Scenedesmus obliquus)光(guang)合速率(lv)和呼吸速率(lv)的影響,發現(xian)兩者(zhe)均(jun)對測試(shi)溫度表(biao)現出壹定的可(ke)塑(su)性(xing)。不(bu)同(tong)選(xuan)擇溫度(12℃、18℃)的柵藻光(guang)合速率(lv)無(wu)差(cha)異(yi);而高溫選(xuan)擇(18℃)的柵藻相(xiang)對低(di)溫選(xuan)擇(12℃)的柵藻,具(ju)有(you)更(geng)高的(de)呼(hu)吸速率(lv)(Tseng et al., 2019)。

參考文獻(xian)
1. Claudi, R., Alei, E., Battistuzzi, M., Cocola, L., Erculiani, M.S., Pozzer, A.C., Salasnich, B., Simionato, D., Squicciarini, V., Poletto, L., La Rocca, N., 2021. Super-Earths, M Dwarfs, and Photosynthetic Organisms: Habitability in the Lab. Life 11(1): 10
2. Dann, M., Ortiz, E.M., Thomas, M., Guljamow, A., Lehmann, M., Schaefer, H., Leister, D., 2021. Enhancing photosynthesis at high light levels by adaptive laboratory evolution. Nat. Plants 7, 681–695.
3. Gavel, A., Maršálek, B., 2004. A novel approach for phytotoxicity assessment by CCD fluorescence imaging. Environmental Toxicology 19, 429–432.
4. Herdean, A., Hall, C., Hughes, D.J., Kuzhiumparambil, U., Diocaretz, B.C., Ralph, P.J., 2023. Temperature mapping of non-photochemical quenching in Chlorella vulgaris. Photosynth Res 155, 191–202.
5. Macário, I.P.E., Veloso, T., Frankenbach, S., Serôdio, J., Passos, H., Sousa, C., Gonçalves, F.J.M., Ventura, S.P.M., Pereira, J.L., 2022. Cyanobacteria as Candidates to Support Mars Colonization: Growth and Biofertilization Potential Using Mars Regolith as a Resource. Front Microbiol 13, 840098.
6. Nowicka, B., 2020. Practical aspects of the measurements of non‐photochemical chlorophyll fluorescence quenching in green microalgae Chlamydomonas reinhardtii using Open FluorCam. Physiologia Plantarum 168, 617–629.
7. Perozeni, F., Stella, G., Ballottari, M., 2018. LHCSR Expression under HSP70/RBCS2 Promoter as a Strategy to Increase Productivity in Microalgae. IJMS 19, 155.
8. Tseng, M., Bernhardt, J.R., Chila, A.E., 2019. Species interactions mediate thermal evolution. Evolutionary Applications 12, 1463–1474.
9. Bernhardt, J.R., Sunday, J.M., O’Connor, M.I., 2017. An empirical test of the temperature dependence of carrying capacity. bioRxiv, 210690.






