服(fu)務(wu)熱線
產(chan)品(pin)展(zhan)示(shi)PRODUCTS
PM-11z 植物生理(li)生(sheng)態監測系統(tong)
壹(yi)、簡介:
PM-11z植(zhi)物生理(li)生(sheng)態監測系統(tong)是(shi)壹(yi)款(kuan)植物生理(li)生(sheng)態數據采(cai)集(ji)系統(tong),運(yun)用(yong)無線(xian)傳(chuan)感器(qi),可長(chang)期(qi)監測植物生理(li)狀(zhuang)態和環(huan)境(jing)因子(zi),數據可通(tong)過GPRS傳輸,極(ji)其方便(bian)。廣(guang)泛(fan)應用(yong)於植(zhi)物研究和作物栽培(pei)等領域。
系統(tong)由(you)主(zhu)機、中繼器(qi)、USB傳(chuan)輸器(qi)、可選(xuan)的植物生理(li)傳(chuan)感器(qi)和環(huan)境(jing)因子(zi)傳感器(qi)組成。

二(er)、特點:
系統(tong)使(shi)用無線(xian)傳(chuan)感器(qi),使(shi)得系統(tong)在野(ye)外的安(an)裝(zhuang)、分(fen)布極(ji)為(wei)方便(bian),不必(bi)受(shou)限於(yu)傳(chuan)感(gan)器(qi)纜線(xian)。
無線(xian)傳(chuan)感器(qi)自(zi)動(dong)按(an)照(zhao)設置(zhi)的時間(jian)間(jian)隔(ge)測量(liang)、存儲數據,並(bing)定(ding)期和數據采(cai)集(ji)裝(zhuang)置(zhi)(比如(ru)USB傳(chuan)輸器(qi))進(jin)行(xing)通訊(xun),通過(guo)數據采(cai)集(ji)裝(zhuang)置(zhi)把(ba)數據傳輸(shu)給(gei)用(yong)戶的電腦。
無線(xian)傳(chuan)輸距(ju)離(li)可(ke)達(da)4km(空(kong)曠無遮(zhe)擋物)。
每(mei)個傳(chuan)感(gan)器(qi)可存儲zui多(duo)7200條(tiao)數據。
若幹(gan)無線(xian)傳(chuan)感器(qi)也(ye)可(ke)通(tong)過(guo)壹(yi)個(ge)中繼器(qi)進(jin)行(xing)數據集中,傳輸給(gei)USB傳輸器(qi)或數據采(cai)集(ji)器(qi)。
每(mei)個無線(xian)傳(chuan)感器(qi)由3節(jie)AA電(dian)池(chi)供(gong)電,可(ke)工(gong)作約6個月。
PM -11z主(zhu)機內置(zhi)SD卡(ka),用於(yu)存儲數據;帶(dai)2.4GHz RF無線(xian)通(tong)訊(xun)模塊;內置(zhi)GPRS模塊,用(yong)戶需準(zhun)備SIM卡(ka)。
zui簡單(dan)的配置(zhi)可以(yi)簡單(dan)到:若幹(gan)(zui多(duo)15個(ge))無線(xian)傳(chuan)感器(qi)+1個(ge)USB傳輸(shu)器(qi)。
可(ke)選傳感器(qi):葉(ye)面溫(wen)度、莖(jing)流、植(zhi)物生長(chang)、光合(he)有(you)效輻(fu)射(she)、總(zong)輻(fu)射(she)、土壤水(shui)分(fen)、溫度(du)和(he)電(dian)導等。
可(ke)由(you)太(tai)陽能供(gong)電裝(zhuang)備供(gong)電(包括太(tai)陽能板(ban)、充電電(dian)池(chi)、充放電(dian)控(kong)制器(qi)及(ji)安(an)裝(zhuang)配件(jian)等)。
Windows版軟件(jian),可以(yi)控(kong)制主(zhu)機進(jin)行(xing)數據采(cai)集(ji)與(yu)傳(chuan)輸(shu);顯示(shi)傳感器(qi)列(lie)表(biao)、數據列(lie)表(biao);把(ba)數據導出(chu)成Excel格(ge)式。

三(san)、可(ke)選(xuan)傳(chuan)感(gan)器(qi)指(zhi)標(biao):
LT-1z葉(ye)溫傳(chuan)感器(qi),測量(liang)範(fan)圍(wei)0-50℃,分(fen)辨(bian)率0.1℃,精度(du)±0.2℃。探(tan)頭(tou)直(zhi)徑1mm,重1.6g(不含(han)纜(lan)線)
LT-IRz紅外(wai)葉(ye)溫傳(chuan)感器(qi),測量(liang)範(fan)圍(wei)0-100℃,分(fen)辨(bian)率0.1℃,精度(du)±1.0℃
SD-5z莖(jing)稈生(sheng)長傳(chuan)感器(qi),適用(yong)於(yu)莖(jing)稈直(zhi)徑5-25mm,直(zhi)徑變(bian)化(hua)測量(liang)範(fan)圍(wei)0-5mm,分(fen)辨(bian)率0.002mm
SD-6z莖(jing)稈生(sheng)長傳(chuan)感器(qi),適用(yong)於(yu)莖(jing)稈直(zhi)徑20-70mm,直(zhi)徑變(bian)化(hua)測量(liang)範(fan)圍(wei)0-5mm,分(fen)辨(bian)率0.002mm
DE-1z樹(shu)木生(sheng)長傳(chuan)感(gan)器(qi),適用(yong)於(yu)樹(shu)木直(zhi)徑大(da)於(yu)60mm,直(zhi)徑變(bian)化(hua)測量(liang)範(fan)圍(wei)0-10mm,分(fen)辨(bian)率0.005mm
FI-Lz小型(xing)果(guo)實(shi)生長傳感(gan)器(qi),測量(liang)範(fan)圍(wei)7-45mm,分(fen)辨(bian)率0.02mm
FI-Mz中型(xing)果(guo)實(shi)生長傳感(gan)器(qi),測量(liang)範(fan)圍(wei)15-90mm,分(fen)辨(bian)率0.04mm
FI-Sz大(da)型(xing)果(guo)實(shi)生長傳感(gan)器(qi),測量(liang)範(fan)圍(wei)30-160mm,分(fen)辨(bian)率0.07mm
LWS-2z葉(ye)片(pian)濕(shi)度(du)傳(chuan)感(gan)器(qi),給(gei)出(chu)葉(ye)片(pian)幹(gan)濕(shi)狀態(tai)
PIR-1z光合(he)有(you)效輻(fu)射(she)傳(chuan)感(gan)器(qi),400-700nm,測量(liang)範(fan)圍(wei)0-2500μmol m-2 s-1,重復性± 1%,精(jing)度± 5%
TIR-4z總輻(fu)射(she)傳(chuan)感(gan)器(qi),測量(liang)範(fan)圍(wei)0-1200 W m-2,重復性± 1%,精(jing)度± 5%
ATH-2z空(kong)氣溫(wen)濕度傳感器(qi),帶(dai)通風(feng)泵;溫(wen)度測量(liang)範(fan)圍(wei)-10-60℃,分(fen)辨(bian)率0.1℃,精度(du)±0.5(5-40℃時);濕度(du)測量(liang)範(fan)圍(wei)3-100%RH,分(fen)辨(bian)率0.1%RH,精度±2%(5-90 %RH),±3%(90-100% RH)
ATH-3z空(kong)氣溫(wen)濕度傳感器(qi),溫度(du)測量(liang)範(fan)圍(wei)-40-60℃,分(fen)辨(bian)率0.1℃,精度(du)±0.5(5-40℃時);濕度(du)測量(liang)範(fan)圍(wei)3-100%RH,分(fen)辨(bian)率0.1%RH,精度±2%(5-90 %RH),±3%(90-100% RH)
DWS-11z氣(qi)象站(zhan)單(dan)元,太(tai)陽輻(fu)射(she)0-1200 Wm-2,溫(wen)度-40 to60℃,濕度(du)3-100 %RH,降雨(yu)分(fen)辨(bian)率1 mm,0.2 mm分(fen)辨(bian)率的可選,風(feng)速1.3-58 m/s,風(feng)向傳(chuan)感器(qi)分(fen)辨(bian)率1°,需要(yao)8節(jie)AA電(dian)池(chi)供(gong)電
SMS-5z土壤水(shui)分(fen)傳感(gan)器(qi),測量(liang)範(fan)圍(wei)0-100%體積比,出廠(chang)已經(jing)校準
SMTE-z土壤3參(can)數傳感器(qi)(水(shui)分(fen)、溫度(du)、電(dian)導率(lv)),水(shui)分(fen)測量(liang)範(fan)圍(wei)0-100%體積比,溫度(du)-40-50℃,電導率(lv)0-15 dS/m,出(chu)廠已經校準
四(si)、部(bu)分(fen)參(can)考文(wen)獻:
1. Balaur N. S., V. A. Vorontsov, E. I. Kleiman and Yu. D. Ton, 2009. Novel Technique for component Monitoring of CO2 exchange in Plants. Russian Journal of Plant Physiology, Vol. 56 (3): 423-427
2. Ben-Asher J. 2005. Net CO2 uptake rates for wheat (Triticum aestivum L.) under Cukurova field conditions: Salinity influence and a novel method for analyzing effect of global warming on agricultural productivity. A report submitted to the ICCAP project. RIHN KyotoJapanp.201-204
3. Ben-Asher J. 2006. Net CO2 Uptake Rates for Wheat Under Saline Field Conditions: a Novel Method for Analyzing Temperature Effects on Irrigation Management., The annual meeting of the Amer. Soc. Agron.IndianapolisNovember 2006 p. 229-4
4. Ben –Asher. J. A. Garcia S. Thain and G. Hoogenboom, 2007. Effect of temperature on Photosynthesis and transpiration of corn in a growth chamber. The annual meeting of the Amer. Soc. Agron.New OrleansNovember 2007. P.321-2
5. Ben –Asher. J. A. Garcia S. Thain and G. Hoogenboom, 2008, Effect of high temperature on photosynthesis and transpiration of sweet corn (Zea mays L. var. rugosa). Photosynthetica 46(4): 595-603
6. Ben-Asher J., P.S. Nobel, E.Yossov and Y. Mizrahi, 2006. Net CO2 uptake rates for Hylocereus undatus and Selenicereus megalanthus under field conditions: Drought influence and a novel method for analyzing temperature dependence. Photosynthetica 44:181-186
7. Ben-Ashera J., Y. Mizrahia and P.S. Nobelb 2008. Transpiration, stem conductance, and CO2 exchange of Hylocereus undatus (a pitahaya) Acta Hort, ISHS (in press)
8. Evrendilek F., J Ben-Asher, Mehmet Aydin and Ismail Celik, 2004. Spatial and temporal variations in diurnal CO2 fluxes of different Mediterranean ecosystems in Turkey Proceeding of the RIHN Kyoto Japan 2004
9. Fatih Evrendilek, Jiftah Ben-Asher, Mehmet Aydin and Ismail Celik, 2005. Spatial and temporal variations in diurnal CO2 fluxes of different Mediterranean ecosystems inTurkey. J. Environ. Monit., 7, 151–157
10. Jiftah Ben-AsheLucas Menzel Pinhas Alpert Fatih Evrendilek and Mehmet Aydin, 2004. Climate change in the easternMediterraneanand agriculture ICCAP annual meeting Cappadocya presentation.Turkey
11. Schmidt U., C. Huber and T. Rocksch, 2007. Evaluation of Combined Application of Fog System and CO2 Enrichment in Greenhouses by Using Phytomonitoring Data. Proc. IS on Greensys: 1301-1308
12. Tomohisa YANO1, Mehmet AYDIN2, Hiroshi NAKAGAWA3, Mustafa üNLü4, Tohru KOBATA5, Celaleddin BARUT?ULAR4, Tomokazu HARAGUCHI6, Müjde KO?4, Masumi KORIYAMA6, Fatih EVREND?LEK2, Jiftah BEN-ASHER7, D. Levent KO?4, Kenji TANAKA8, R?za KANBER4 2007. Implications of Future Climate Change for Crop Productivity in Seyhan River Basin. Joint Reprot ICCAP RIHNKyotoJapan
五(wu)、產地:
以(yi)色(se)列(lie)






